Yong Jiang, Anran Dai, Yuwei Huang, Hua Li, Jian Cui, Haochen Yang, Lu Si, Tao Jiao, Zhengxu Ren, Ziwei Zhang, Si Mou, Hengrui Zhu, Wenhui Guo, Qiang Huang, Yilin Li, Manman Xue, Jingwei Jiang, Fei Wang, Li Li, Qinying Zhong, Haopeng Wang
{"title":"Ligand-induced ubiquitination unleashes LAG3 immune checkpoint function by hindering membrane sequestration of signaling motifs","authors":"Yong Jiang, Anran Dai, Yuwei Huang, Hua Li, Jian Cui, Haochen Yang, Lu Si, Tao Jiao, Zhengxu Ren, Ziwei Zhang, Si Mou, Hengrui Zhu, Wenhui Guo, Qiang Huang, Yilin Li, Manman Xue, Jingwei Jiang, Fei Wang, Li Li, Qinying Zhong, Haopeng Wang","doi":"10.1016/j.cell.2025.02.014","DOIUrl":null,"url":null,"abstract":"Lymphocyte activation gene 3 (LAG3) has emerged as a promising cancer immunotherapy target, but the mechanism underlying LAG3 activation upon ligand engagement remains elusive. Here, LAG3 was found to undergo robust non-K48-linked polyubiquitination upon ligand engagement, which promotes LAG3’s inhibitory function instead of causing degradation. This ubiquitination could be triggered by the engagement of major histocompatibility complex class II (MHC class II) and membrane-bound (but not soluble) fibrinogen-like protein 1 (FGL1). LAG3 ubiquitination, mediated redundantly by the E3 ligases c-Cbl and Cbl-b, disrupted the membrane binding of the juxtamembrane basic residue-rich sequence, thereby stabilizing the LAG3 cytoplasmic tail in a membrane-dissociated conformation enabling signaling. Furthermore, LAG3 ubiquitination is crucial for the LAG3-mediated suppression of antitumor immunity <em>in vivo</em>. Consistently, LAG3 therapeutic antibodies repress LAG3 ubiquitination, correlating with their checkpoint blockade effects. Moreover, patient cohort analyses suggest that LAG3/CBL coexpression could serve as a biomarker for response to LAG3 blockade. Collectively, our study reveals an immune-checkpoint-triggering mechanism with translational potential in cancer immunotherapy.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"11 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.02.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lymphocyte activation gene 3 (LAG3) has emerged as a promising cancer immunotherapy target, but the mechanism underlying LAG3 activation upon ligand engagement remains elusive. Here, LAG3 was found to undergo robust non-K48-linked polyubiquitination upon ligand engagement, which promotes LAG3’s inhibitory function instead of causing degradation. This ubiquitination could be triggered by the engagement of major histocompatibility complex class II (MHC class II) and membrane-bound (but not soluble) fibrinogen-like protein 1 (FGL1). LAG3 ubiquitination, mediated redundantly by the E3 ligases c-Cbl and Cbl-b, disrupted the membrane binding of the juxtamembrane basic residue-rich sequence, thereby stabilizing the LAG3 cytoplasmic tail in a membrane-dissociated conformation enabling signaling. Furthermore, LAG3 ubiquitination is crucial for the LAG3-mediated suppression of antitumor immunity in vivo. Consistently, LAG3 therapeutic antibodies repress LAG3 ubiquitination, correlating with their checkpoint blockade effects. Moreover, patient cohort analyses suggest that LAG3/CBL coexpression could serve as a biomarker for response to LAG3 blockade. Collectively, our study reveals an immune-checkpoint-triggering mechanism with translational potential in cancer immunotherapy.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.