{"title":"Prediction of Chinese stock volatility: Harnessing higher-order moments information of stock and futures markets","authors":"Gaoxiu Qiao , Yunrun Wang , Wenwen Liu","doi":"10.1016/j.ribaf.2025.102863","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines the predictive capacity of higher-order moments (skewness and kurtosis) of the Chinese stock index and futures market for the realized volatility of the stock market. Owing to the model uncertainty caused by structural changes, we propose the use of data-driven combination forecasting, namely, the LASSO-weighted average windows method over forecasts of long short-term memory network (LSTM), support vector regression (SVR), or the ordinary least squares (OLS) method. Empirical findings indicate that the LSTM method outperforms both SVR and OLS. The LASSO-weighted forecasts across these three methods significantly enhance the predictive ability of individual methods. The realized higher-order moments of both markets can effectively increase the prediction accuracy of stock market volatility, with the higher-order moments in the stock market contributing more than those in index futures.</div></div>","PeriodicalId":51430,"journal":{"name":"Research in International Business and Finance","volume":"76 ","pages":"Article 102863"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in International Business and Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0275531925001199","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines the predictive capacity of higher-order moments (skewness and kurtosis) of the Chinese stock index and futures market for the realized volatility of the stock market. Owing to the model uncertainty caused by structural changes, we propose the use of data-driven combination forecasting, namely, the LASSO-weighted average windows method over forecasts of long short-term memory network (LSTM), support vector regression (SVR), or the ordinary least squares (OLS) method. Empirical findings indicate that the LSTM method outperforms both SVR and OLS. The LASSO-weighted forecasts across these three methods significantly enhance the predictive ability of individual methods. The realized higher-order moments of both markets can effectively increase the prediction accuracy of stock market volatility, with the higher-order moments in the stock market contributing more than those in index futures.
期刊介绍:
Research in International Business and Finance (RIBAF) seeks to consolidate its position as a premier scholarly vehicle of academic finance. The Journal publishes high quality, insightful, well-written papers that explore current and new issues in international finance. Papers that foster dialogue, innovation, and intellectual risk-taking in financial studies; as well as shed light on the interaction between finance and broader societal concerns are particularly appreciated. The Journal welcomes submissions that seek to expand the boundaries of academic finance and otherwise challenge the discipline. Papers studying finance using a variety of methodologies; as well as interdisciplinary studies will be considered for publication. Papers that examine topical issues using extensive international data sets are welcome. Single-country studies can also be considered for publication provided that they develop novel methodological and theoretical approaches or fall within the Journal''s priority themes. It is especially important that single-country studies communicate to the reader why the particular chosen country is especially relevant to the issue being investigated. [...] The scope of topics that are most interesting to RIBAF readers include the following: -Financial markets and institutions -Financial practices and sustainability -The impact of national culture on finance -The impact of formal and informal institutions on finance -Privatizations, public financing, and nonprofit issues in finance -Interdisciplinary financial studies -Finance and international development -International financial crises and regulation -Financialization studies -International financial integration and architecture -Behavioral aspects in finance -Consumer finance -Methodologies and conceptualization issues related to finance