Jun-Jie Yuan , Cui Jiang , Tong Gong , Lian-Lian Zhang , Wei-Jiang Gong
{"title":"Bound state in continuum and its superconducting-induced modification in the two-channel Fano–Anderson structure","authors":"Jun-Jie Yuan , Cui Jiang , Tong Gong , Lian-Lian Zhang , Wei-Jiang Gong","doi":"10.1016/j.physe.2025.116231","DOIUrl":null,"url":null,"abstract":"<div><div>This work systematically investigates the electronic transport properties of multi-quantum-dot (multi-QD) systems in a two-channel Fano–Anderson structure using non-equilibrium Green’s function method. It is found that the coupling asymmetry between QDs and leads, QD levels, and external magnetic flux are key factors to induce rich quantum transport phenomena, including bound states in continuum (BIC) and the Fano antiresonance. By regulating the number and spatial symmetry of QDs, effective control of these quantum effects can be achieved, exhibiting clear odd–even oscillation patterns. In the presence of superconducting proximity effect, the Andreev reflection can also contribute to the electron transport properties, but the BIC phenomena tend to be more notable. These results help to understand the transport characteristics of the two-channel Fano–Anderson structure.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"171 ","pages":"Article 116231"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000566","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work systematically investigates the electronic transport properties of multi-quantum-dot (multi-QD) systems in a two-channel Fano–Anderson structure using non-equilibrium Green’s function method. It is found that the coupling asymmetry between QDs and leads, QD levels, and external magnetic flux are key factors to induce rich quantum transport phenomena, including bound states in continuum (BIC) and the Fano antiresonance. By regulating the number and spatial symmetry of QDs, effective control of these quantum effects can be achieved, exhibiting clear odd–even oscillation patterns. In the presence of superconducting proximity effect, the Andreev reflection can also contribute to the electron transport properties, but the BIC phenomena tend to be more notable. These results help to understand the transport characteristics of the two-channel Fano–Anderson structure.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures