Characterizing the spatial potential of an ion trap chip

Chip Pub Date : 2025-03-01 DOI:10.1016/j.chip.2024.100126
Qingqing Qin , Ting Chen , Xinfang Zhang , Baoquan Ou , Jie Zhang , Chunwang Wu , Yi Xie , Wei Wu , Pingxing Chen
{"title":"Characterizing the spatial potential of an ion trap chip","authors":"Qingqing Qin ,&nbsp;Ting Chen ,&nbsp;Xinfang Zhang ,&nbsp;Baoquan Ou ,&nbsp;Jie Zhang ,&nbsp;Chunwang Wu ,&nbsp;Yi Xie ,&nbsp;Wei Wu ,&nbsp;Pingxing Chen","doi":"10.1016/j.chip.2024.100126","DOIUrl":null,"url":null,"abstract":"<div><div>The accurate characterization of the spatial electric field generated by electrodes in a surface electrode trap is of paramount importance. In this pursuit, we have identified a simple yet highly precise parametric expression to describe the spatial field of a rectangular-shaped electrode. Leveraging this expression, we introduced an optimization method designed to accurately characterize the axial electric field intensity produced by the powered electrode and the stray field. Distinct from the existing methods, our approach integrates a diverse array of experimental data, including the equilibrium positions of ions in a linear string, the equilibrium positions of single trapped ions, and trap frequencies, to effectively reduce the systematic errors. This approach provides considerable flexibility in voltage settings for data acquisition, making it especially advantageous for surface electrode traps where the trapping height of ion probes may vary with casual voltage settings. In our experimental demonstration, we successfully minimized the discrepancy between observations and model predictions to a remarkable degree. The relative errors of secular frequencies were contained within ±0.5%, and the positional error of ions was constrained to less than 1.2 μm, which surpasses the performance of current methodologies.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate characterization of the spatial electric field generated by electrodes in a surface electrode trap is of paramount importance. In this pursuit, we have identified a simple yet highly precise parametric expression to describe the spatial field of a rectangular-shaped electrode. Leveraging this expression, we introduced an optimization method designed to accurately characterize the axial electric field intensity produced by the powered electrode and the stray field. Distinct from the existing methods, our approach integrates a diverse array of experimental data, including the equilibrium positions of ions in a linear string, the equilibrium positions of single trapped ions, and trap frequencies, to effectively reduce the systematic errors. This approach provides considerable flexibility in voltage settings for data acquisition, making it especially advantageous for surface electrode traps where the trapping height of ion probes may vary with casual voltage settings. In our experimental demonstration, we successfully minimized the discrepancy between observations and model predictions to a remarkable degree. The relative errors of secular frequencies were contained within ±0.5%, and the positional error of ions was constrained to less than 1.2 μm, which surpasses the performance of current methodologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Characterizing the spatial potential of an ion trap chip Molecular engineering enables high-performance hybrid perovskite photodetector Coexistence of unipolar and bipolar resistive switching in optical synaptic memristors and neuromorphic computing Angle-insensitive dual bound states in the continuum on germanium metasurface Back-end-of-line compatible Hf0.5Zr0.5O2 ferroelectric devices enabled by microwave annealing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1