Jinchuan Wen , Zhangxi Wu , Ming Li , Dahong Zhao , Yuanchun Huang , Yu Liu
{"title":"Overcoming strength-ductility trade-off of Mg2Si via Al and O doping: First-principles and experimental investigations","authors":"Jinchuan Wen , Zhangxi Wu , Ming Li , Dahong Zhao , Yuanchun Huang , Yu Liu","doi":"10.1016/j.intermet.2025.108739","DOIUrl":null,"url":null,"abstract":"<div><div>The intrinsic brittleness of Mg<sub>2</sub>Si severely deteriorates the mechanical properties of composites and limits their potential application as reinforcing particles. This work puts forward a cost-efficient approach to address this challenge by doping Al/O into Mg<sub>2</sub>Si to improve the deformation coordination of Al-Mg<sub>2</sub>Si composites. First-principles calculations revealed that Al doping alone reduced the modulus and hardness of Mg<sub>2</sub>Si and increased its Poisson's ratio, but Al-doped Mg<sub>2</sub>Si still exhibited brittle characteristics. O doping alone or Al/O co-doping further reduced the modulus and hardness of compounds, and realized the transformation of Mg<sub>2</sub>Si from brittle to plastic. Additionally, the anisotropy of doped Mg<sub>2</sub>Si was slightly increased, but Al/O co-doping suppressed the anisotropy to a certain extent compared to doping alone. The underlying mechanism is that Al doping enhanced the metallicity of the compounds, and Al/O co-doping significantly weakened the strength of Mg-Si and Si-Si covalent bonds, and formed new O-Mg and O-Si ionic bonds. Subsequently, nano-indentation experiments were carried out to test the Young's modulus and hardness of samples with different doping elements. The results, in descending order, were as follows: Al<sub>8</sub>Si<sub>4</sub>, Al<sub>8</sub>Si<sub>4</sub>Al, Al<sub>8</sub>Si<sub>4</sub>O, Al<sub>8</sub>Si<sub>4</sub>AlO, which aligned consistently with the theoretical calculations. The Young's modulus and hardness of Mg<sub>8</sub>Si<sub>4</sub>AlO were 72.9 GPa and 198 HV, respectively, which were approximately 48.4 % and 32.4 % lower than those of undoped Mg<sub>2</sub>Si. This work provides valuable insights and guidance for designing novel high-strength and high-toughness composites by doping modified reinforced particles.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"181 ","pages":"Article 108739"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525001049","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The intrinsic brittleness of Mg2Si severely deteriorates the mechanical properties of composites and limits their potential application as reinforcing particles. This work puts forward a cost-efficient approach to address this challenge by doping Al/O into Mg2Si to improve the deformation coordination of Al-Mg2Si composites. First-principles calculations revealed that Al doping alone reduced the modulus and hardness of Mg2Si and increased its Poisson's ratio, but Al-doped Mg2Si still exhibited brittle characteristics. O doping alone or Al/O co-doping further reduced the modulus and hardness of compounds, and realized the transformation of Mg2Si from brittle to plastic. Additionally, the anisotropy of doped Mg2Si was slightly increased, but Al/O co-doping suppressed the anisotropy to a certain extent compared to doping alone. The underlying mechanism is that Al doping enhanced the metallicity of the compounds, and Al/O co-doping significantly weakened the strength of Mg-Si and Si-Si covalent bonds, and formed new O-Mg and O-Si ionic bonds. Subsequently, nano-indentation experiments were carried out to test the Young's modulus and hardness of samples with different doping elements. The results, in descending order, were as follows: Al8Si4, Al8Si4Al, Al8Si4O, Al8Si4AlO, which aligned consistently with the theoretical calculations. The Young's modulus and hardness of Mg8Si4AlO were 72.9 GPa and 198 HV, respectively, which were approximately 48.4 % and 32.4 % lower than those of undoped Mg2Si. This work provides valuable insights and guidance for designing novel high-strength and high-toughness composites by doping modified reinforced particles.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.