Thiohalorhabdus methylotropha sp. nov., an extremely halophilic autotrophic methylotiotroph from hypersaline lakes

IF 3.3 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Systematic and applied microbiology Pub Date : 2025-03-14 DOI:10.1016/j.syapm.2025.126602
Dimitry Y. Sorokin , Alexander Y. Merkel , William Gebbe , Marina G. Kalyuzhnaya
{"title":"Thiohalorhabdus methylotropha sp. nov., an extremely halophilic autotrophic methylotiotroph from hypersaline lakes","authors":"Dimitry Y. Sorokin ,&nbsp;Alexander Y. Merkel ,&nbsp;William Gebbe ,&nbsp;Marina G. Kalyuzhnaya","doi":"10.1016/j.syapm.2025.126602","DOIUrl":null,"url":null,"abstract":"<div><div>So far, there have been no reports of trimethylamine (TMA)-utilizing extremely halophilic microorganisms in hypersaline habitats. Our aerobic enrichments at 4 M total Na<sup>+</sup> with 5 mM TMA inoculated with surface sediments from hypersaline soda (at pH 9.5) or chloride-sulfate (at pH 7) lakes in southwestern Siberia were successful only for the latter. The initial enrichment included both bacteria and haloarchaea but only the bacterial component was able to grow as a pure culture with TMA. Strain Cl-TMA forms a new-species lineage within the genus <em>Thiohalorhabdus</em> which includes extremely halophilic and obligate lithoautotrophic sulfur-oxidizing gammaproteobacteria. Cl-TMA can grow methyloautotrophically utilizing TMA, dimethylamine (DMA) and methanol (MeOH) as the electron donors or chemolithoautotrophically with thiosulfate. Mixotrophic growth was also observed with the three methyl compounds and thiosulfate. Carbon is assimilated autotrophically via the Calvin-Benson-Basham pathway. Unlike the type species of <em>Thiohalorhabdus</em>, <em>T. denitrificans</em>, Cl-TMA was incapable of anaerobic growth via denitrification. The isolate belongs to extreme halophiles growing between 2.5 and 5 M NaCl with an optimum at 3–3.5 M. Genome analysis identified two gene clusters coding for PQQ-dependent methanol dehydrogenases (MxaFI and XoxF), four homologues of the formaldehyde activating enzymes (Faes), a TMA/DMA oxidation locus, and two cluster of genes encoding an <em>N</em>-methylglutamate dehydrogenase pathway (NMGP) for methylamine oxidation. The first steps of C<sub>1</sub>-subtrate conversions are followed by the tetrahydrofolate (THF)-linked and tetrahydromethanopterin (H4MPT)-linked formaldehyde oxidation pathways and two formate dehydrogenases. All of those signatures of methylotrophy were absent in <em>T. denitrificans</em>. In contrast, genes for two key sulfur oxidation enzymes, thiosulfate dehydrogenase TsdAB and sulfide dehydrogenase FccAB, that are present in the type species are missing in Cl-TMA. Thiosulfate is oxidized to sulfate by a combination of an incomplete Sox cycle and an sHdr system. Strain Cl-TMA<sup>T</sup> (JCM 35977 = UQM 41915) is proposed to be classified as <em>Thiohalorhabdus methylotrophus</em> sp. nov.</div></div>","PeriodicalId":22124,"journal":{"name":"Systematic and applied microbiology","volume":"48 3","pages":"Article 126602"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic and applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202025000244","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

So far, there have been no reports of trimethylamine (TMA)-utilizing extremely halophilic microorganisms in hypersaline habitats. Our aerobic enrichments at 4 M total Na+ with 5 mM TMA inoculated with surface sediments from hypersaline soda (at pH 9.5) or chloride-sulfate (at pH 7) lakes in southwestern Siberia were successful only for the latter. The initial enrichment included both bacteria and haloarchaea but only the bacterial component was able to grow as a pure culture with TMA. Strain Cl-TMA forms a new-species lineage within the genus Thiohalorhabdus which includes extremely halophilic and obligate lithoautotrophic sulfur-oxidizing gammaproteobacteria. Cl-TMA can grow methyloautotrophically utilizing TMA, dimethylamine (DMA) and methanol (MeOH) as the electron donors or chemolithoautotrophically with thiosulfate. Mixotrophic growth was also observed with the three methyl compounds and thiosulfate. Carbon is assimilated autotrophically via the Calvin-Benson-Basham pathway. Unlike the type species of Thiohalorhabdus, T. denitrificans, Cl-TMA was incapable of anaerobic growth via denitrification. The isolate belongs to extreme halophiles growing between 2.5 and 5 M NaCl with an optimum at 3–3.5 M. Genome analysis identified two gene clusters coding for PQQ-dependent methanol dehydrogenases (MxaFI and XoxF), four homologues of the formaldehyde activating enzymes (Faes), a TMA/DMA oxidation locus, and two cluster of genes encoding an N-methylglutamate dehydrogenase pathway (NMGP) for methylamine oxidation. The first steps of C1-subtrate conversions are followed by the tetrahydrofolate (THF)-linked and tetrahydromethanopterin (H4MPT)-linked formaldehyde oxidation pathways and two formate dehydrogenases. All of those signatures of methylotrophy were absent in T. denitrificans. In contrast, genes for two key sulfur oxidation enzymes, thiosulfate dehydrogenase TsdAB and sulfide dehydrogenase FccAB, that are present in the type species are missing in Cl-TMA. Thiosulfate is oxidized to sulfate by a combination of an incomplete Sox cycle and an sHdr system. Strain Cl-TMAT (JCM 35977 = UQM 41915) is proposed to be classified as Thiohalorhabdus methylotrophus sp. nov.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Systematic and applied microbiology
Systematic and applied microbiology 生物-生物工程与应用微生物
CiteScore
7.50
自引率
5.90%
发文量
57
审稿时长
22 days
期刊介绍: Systematic and Applied Microbiology deals with various aspects of microbial diversity and systematics of prokaryotes. It focuses on Bacteria and Archaea; eukaryotic microorganisms will only be considered in rare cases. The journal perceives a broad understanding of microbial diversity and encourages the submission of manuscripts from the following branches of microbiology:
期刊最新文献
Thiohalorhabdus methylotropha sp. nov., an extremely halophilic autotrophic methylotiotroph from hypersaline lakes Erratum to "Characterization of two novel species of the genusBifidobacterium: Bifidobacterium saimiriisciurei sp. nov. and Bifidobacterium platyrrhinorum sp. nov." [Syst. Appl. Microbiol. 43 (2020) 126111]. Three new Microbacterium species isolated from the Marmara Sea mucilage event: Microbacterium istanbulense sp. nov., Microbacterium bandirmense sp. nov., Microbacterium marmarense sp. nov Editorial Board Genome-based taxonomy of the family Haloarculaceae, proposal of Natronomonadaceae fam. nov., and description of four novel halophilic archaea from two saline lakes and a marine solar saltern
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1