{"title":"Recovery of lithium, cobalt and nickel from the spent NMC Li-ion battery by reduction roasting, selective leaching and precipitation","authors":"Asal Shoaei, Sadegh Firoozi","doi":"10.1016/j.wasman.2025.114749","DOIUrl":null,"url":null,"abstract":"<div><div>Valuable elements from the NMC Li-ion battery black mass were recovered by reduction roasting and selective leaching/precipitation. Active materials were separated from the Al/Cu collector foils by thermal treatment and then subjected to reduction roasting by carbon anode in the temperature range of 600–900 °C for 2 h. The progress of the reactions was studied via XRD, TGA-DTA, and thermodynamic modeling. Ni/Co reduction was completed at T ≥ 800 °C and transformation of Li<sub>2</sub>CO<sub>3</sub> to Li<sub>2</sub>O occurred at 900 °C. Water leaching was employed to separate lithium from roasted products and about 93 % of Li was selectively extracted from the roasted product. Pure Li<sub>2</sub>CO<sub>3</sub> was precipitated from the solution by CO<sub>2</sub> injection without purification or the addition of pH modifiers. Mn was then selectively leached from the Li-depleted powder by citric acid. The effect of citric acid concentration, temperature, and time on the leaching efficiency of Mn was studied. About 95 % Mn was removed from the powder at a citric acid concentration of 0.15 M, T = 75 °C, time = 200 min, and S/L = 20 g/L. The activation energy of the Mn dissolution was measured as 15.5 kJ/mol suggesting a diffusional controlled mechanism. A Ni-Co alloy powder was obtained as the final leaching residue. This study provides an effective and practical approach for recycling valuable metals from spent NMC Li-ion batteries.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"200 ","pages":"Article 114749"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25001540","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Valuable elements from the NMC Li-ion battery black mass were recovered by reduction roasting and selective leaching/precipitation. Active materials were separated from the Al/Cu collector foils by thermal treatment and then subjected to reduction roasting by carbon anode in the temperature range of 600–900 °C for 2 h. The progress of the reactions was studied via XRD, TGA-DTA, and thermodynamic modeling. Ni/Co reduction was completed at T ≥ 800 °C and transformation of Li2CO3 to Li2O occurred at 900 °C. Water leaching was employed to separate lithium from roasted products and about 93 % of Li was selectively extracted from the roasted product. Pure Li2CO3 was precipitated from the solution by CO2 injection without purification or the addition of pH modifiers. Mn was then selectively leached from the Li-depleted powder by citric acid. The effect of citric acid concentration, temperature, and time on the leaching efficiency of Mn was studied. About 95 % Mn was removed from the powder at a citric acid concentration of 0.15 M, T = 75 °C, time = 200 min, and S/L = 20 g/L. The activation energy of the Mn dissolution was measured as 15.5 kJ/mol suggesting a diffusional controlled mechanism. A Ni-Co alloy powder was obtained as the final leaching residue. This study provides an effective and practical approach for recycling valuable metals from spent NMC Li-ion batteries.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)