Xiuying Yan , Xiaoxue Wu , Xingxing Ji , Qinglong Meng
{"title":"Load reduction by a demand response enhanced chilled water distributor for centralized air-conditioning systems in commercial building","authors":"Xiuying Yan , Xiaoxue Wu , Xingxing Ji , Qinglong Meng","doi":"10.1016/j.enbuild.2025.115580","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the increasing energy demands and environmental concerns, strategies for managing peak electricity load in commercial buildings are becoming challenges. A demand response (DR) control strategy based on load prediction is proposed to alleviate the pressure on the grid caused by peak demand while ensuring good building environment and meeting thermal comfort for users. The strategy implements partial chiller shutdown with pre-cooling. An enhanced chilled water distributor considering personnel satisfaction, which adds a factor for the sensitivity of indoor air temperature increases in the adaptive function, is proposed. A co-simulation platform was developed to investigate load shifting potential, enhance energy efficiency and reduce operating costs. Thermal comfort is also considered, ensuring the long-term effectiveness of the strategy and user satisfaction. It is compared with conventional control strategy, price-based DR strategy, partial chiller shutdown, as well as DR control strategies involving partial chiller shutdown and pre-cooling. The simulation results demonstrate that the proposed DR strategy achieved the maximum load reduction without causing load rebound. The proposed DR strategy achieves a 4.7% electricity saving rate and a 3.5% reduction in total operating costs comparing to partial chiller shutdown. The indoor temperature and temperature deviation are controlled in reasonable ranges.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"336 ","pages":"Article 115580"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877882500310X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the increasing energy demands and environmental concerns, strategies for managing peak electricity load in commercial buildings are becoming challenges. A demand response (DR) control strategy based on load prediction is proposed to alleviate the pressure on the grid caused by peak demand while ensuring good building environment and meeting thermal comfort for users. The strategy implements partial chiller shutdown with pre-cooling. An enhanced chilled water distributor considering personnel satisfaction, which adds a factor for the sensitivity of indoor air temperature increases in the adaptive function, is proposed. A co-simulation platform was developed to investigate load shifting potential, enhance energy efficiency and reduce operating costs. Thermal comfort is also considered, ensuring the long-term effectiveness of the strategy and user satisfaction. It is compared with conventional control strategy, price-based DR strategy, partial chiller shutdown, as well as DR control strategies involving partial chiller shutdown and pre-cooling. The simulation results demonstrate that the proposed DR strategy achieved the maximum load reduction without causing load rebound. The proposed DR strategy achieves a 4.7% electricity saving rate and a 3.5% reduction in total operating costs comparing to partial chiller shutdown. The indoor temperature and temperature deviation are controlled in reasonable ranges.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.