{"title":"Influence of fiber/matrix interface on gas permeability properties of CF/TP composites","authors":"Gautier Allusse , Olivier De Almeida , Quentin Govignon , Monica Pucci , Fabrice Schmidt","doi":"10.1016/j.compositesb.2025.112358","DOIUrl":null,"url":null,"abstract":"<div><div>For hydrogen application, one of the most important material property required is low gas permeability. In composite materials, this property depends on the materials but also on the processing parameters. In particular the residual porosity, but also the quality of the fiber/matrix interface, play a crucial role. This is particularly the case in composites involving a thermoplastic matrix with carbon fibers as the lack of reactive groups on the fiber surface can limit the level of interfacial interactions between the reinforcement and the matrix. In this study, the role of the interface is analyzed through the investigation of the hydrogen permeability of carbon fiber reinforced thermoplastics (CF/PVDF and CF/PPS) using different polymers and carbon fibers. The hydrogen permeability of the composites was measured, and a correlation with the crystallization behavior of the matrix on the fiber surface was identified. Hydrogen permeability decreases when the fiber favors matrix nucleation. Nucleation is improved by increasing the surface roughness of the carbon fiber.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"298 ","pages":"Article 112358"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825002501","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For hydrogen application, one of the most important material property required is low gas permeability. In composite materials, this property depends on the materials but also on the processing parameters. In particular the residual porosity, but also the quality of the fiber/matrix interface, play a crucial role. This is particularly the case in composites involving a thermoplastic matrix with carbon fibers as the lack of reactive groups on the fiber surface can limit the level of interfacial interactions between the reinforcement and the matrix. In this study, the role of the interface is analyzed through the investigation of the hydrogen permeability of carbon fiber reinforced thermoplastics (CF/PVDF and CF/PPS) using different polymers and carbon fibers. The hydrogen permeability of the composites was measured, and a correlation with the crystallization behavior of the matrix on the fiber surface was identified. Hydrogen permeability decreases when the fiber favors matrix nucleation. Nucleation is improved by increasing the surface roughness of the carbon fiber.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.