J. Chávez-Caiza , M. Navlani-García , J. Fernández-Catalá , Anand Bhardwaj , Cláudio M. Lousada , Lyubov M. Belova , Á. Berenguer-Murcia , D. Cazorla-Amorós
{"title":"CuxO-modified inkjet printed TiO2 thin films photocatalysts for hydrogen production from water splitting","authors":"J. Chávez-Caiza , M. Navlani-García , J. Fernández-Catalá , Anand Bhardwaj , Cláudio M. Lousada , Lyubov M. Belova , Á. Berenguer-Murcia , D. Cazorla-Amorós","doi":"10.1016/j.cattod.2025.115273","DOIUrl":null,"url":null,"abstract":"<div><div>For the past decades, the scientific community has attempted to develop photocatalysts to obtain green hydrogen to diversify the current energy vectors, largely based on fossil fuels. In this context, many researchers have focused on modifying well-known photocatalysts such as TiO<sub>2</sub> using other transition metals to boost photocatalytic activity in H<sub>2</sub> production. However, powdered materials are difficult to reuse after prolonged exposure to liquid media in photocatalytic reactors. In this work, we have taken an alternative approach by developing structured catalysts based on TiO<sub>2</sub> thin films and different Cu species. Photoluminescence analysis showed that incorporating Cu species on the TiO<sub>2</sub> thin film decreases the e<sup>-</sup>-h<sup>+</sup> recombination rate. The photocatalytic activity of the nanostructured thin films is 298 µmol g<sup>−1</sup> h<sup>−1</sup> which is comparable to the reports described in the literature. Additionally, the thin films have simple and reproducible manufacturing, are easy to handle, are reusable and cost-effective. All these facts, make them a significantly more efficient technology than the counterpart powder materials.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"453 ","pages":"Article 115273"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125000914","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For the past decades, the scientific community has attempted to develop photocatalysts to obtain green hydrogen to diversify the current energy vectors, largely based on fossil fuels. In this context, many researchers have focused on modifying well-known photocatalysts such as TiO2 using other transition metals to boost photocatalytic activity in H2 production. However, powdered materials are difficult to reuse after prolonged exposure to liquid media in photocatalytic reactors. In this work, we have taken an alternative approach by developing structured catalysts based on TiO2 thin films and different Cu species. Photoluminescence analysis showed that incorporating Cu species on the TiO2 thin film decreases the e--h+ recombination rate. The photocatalytic activity of the nanostructured thin films is 298 µmol g−1 h−1 which is comparable to the reports described in the literature. Additionally, the thin films have simple and reproducible manufacturing, are easy to handle, are reusable and cost-effective. All these facts, make them a significantly more efficient technology than the counterpart powder materials.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.