{"title":"Fast Resilience Assessment for Power Systems Under Typhoons Based on Spatial Temporal Graphs","authors":"Yuhong Zhu;Yongzhi Zhou;Yong Sun;Wei Li","doi":"10.1109/JSYST.2024.3496754","DOIUrl":null,"url":null,"abstract":"Despite great progress in modeling the resilience response of power systems under extreme events, it remains difficult to assess the evolutionary trend of system performance at a specific observation moment during such events. Conventional simulation-based assessment methods are typically time-consuming because a series of scenario-specific optimization problems must be solved as a prerequisite. Thus, a spatial-temporal graph-based approach is proposed for fast resilience assessment to provide timely warning information. The key factors, including observable meteorological information, component vulnerabilities, emergency dispatch, and repair strategies, are modeled in the form of matrices that depict the spatial and temporal relationships. Based on these matrices, a spatiotemporal graph neural network is developed to fit the mapping relationship between observable states and resilience indicators, which is trained offline and enables fast assessment via forward inference. Regarding the uncertainties of various extreme scenarios, the evaluation procedure combines the whole-process simulation and single-state replay technologies, which can respectively consider the uncertainties and provide deterministic data labeling for assessment. Finally, the effectiveness of the proposed method is verified on the benchmarks, including the IEEE 118-bus system and a realistic 2868-bus system.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"19 1","pages":"8-19"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10772695/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite great progress in modeling the resilience response of power systems under extreme events, it remains difficult to assess the evolutionary trend of system performance at a specific observation moment during such events. Conventional simulation-based assessment methods are typically time-consuming because a series of scenario-specific optimization problems must be solved as a prerequisite. Thus, a spatial-temporal graph-based approach is proposed for fast resilience assessment to provide timely warning information. The key factors, including observable meteorological information, component vulnerabilities, emergency dispatch, and repair strategies, are modeled in the form of matrices that depict the spatial and temporal relationships. Based on these matrices, a spatiotemporal graph neural network is developed to fit the mapping relationship between observable states and resilience indicators, which is trained offline and enables fast assessment via forward inference. Regarding the uncertainties of various extreme scenarios, the evaluation procedure combines the whole-process simulation and single-state replay technologies, which can respectively consider the uncertainties and provide deterministic data labeling for assessment. Finally, the effectiveness of the proposed method is verified on the benchmarks, including the IEEE 118-bus system and a realistic 2868-bus system.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.