Influence of Negative Bias Temperature Instability on Single-Event Burnout in n-Channel Power VDMOS Transistors

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nuclear Science Pub Date : 2025-02-13 DOI:10.1109/TNS.2025.3541492
Fengkai Liu;Lei Wu;Shuo Liu;Zhijie Zhou;Yadong Wei;Kai Wang;Huimin Geng;Zhongli Liu;Jianqun Yang;Xingji Li
{"title":"Influence of Negative Bias Temperature Instability on Single-Event Burnout in n-Channel Power VDMOS Transistors","authors":"Fengkai Liu;Lei Wu;Shuo Liu;Zhijie Zhou;Yadong Wei;Kai Wang;Huimin Geng;Zhongli Liu;Jianqun Yang;Xingji Li","doi":"10.1109/TNS.2025.3541492","DOIUrl":null,"url":null,"abstract":"This article investigates the effects of cumulative damage, specifically negative bias temperature instability (NBTI), on the transient phenomenon known as single-event burnout (SEB) in power vertical diffused metal-oxide–semiconductor field-effect transistors (VDMOSFETs). Tantalum heavy ion irradiation (THII) experiments were conducted on devices subjected to various pretreatments: negative bias temperature stress (NBTS), hydrogen, low temperature, and a combination of hydrogen and NBTS. The results indicate that devices pretreated with NBTS exhibit increased sensitivity to SEB, whereas those subjected to other pretreatment methods demonstrate decreased sensitivity. In addition, the subthreshold mid-gap technique (SMGT) was employed to differentiate between interface traps and oxide charges, with subsequent technology computer-aided design (TCAD) simulations analyzing their impacts on SEB. The findings reveal that NBTS pretreatment primarily reduces the built-in potential (<inline-formula> <tex-math>$\\varphi _{\\text {B}}$ </tex-math></inline-formula>) of parasitic bipolar junction transistor (BJT) conduction by generating oxide charges, thereby increasing SEB sensitivity. Conversely, pretreatments with hydrogen and low temperature promote the conversion of oxide charges into interface traps, resulting in decreased SEB sensitivity. Although the change in SEB sensitivity is relatively small, this research reveals a synergistic interaction between NBTI and SEB, which may lead to premature SEB occurrences and reduce the operational lifespan of power VDMOS transistors.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 3","pages":"901-907"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884606/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the effects of cumulative damage, specifically negative bias temperature instability (NBTI), on the transient phenomenon known as single-event burnout (SEB) in power vertical diffused metal-oxide–semiconductor field-effect transistors (VDMOSFETs). Tantalum heavy ion irradiation (THII) experiments were conducted on devices subjected to various pretreatments: negative bias temperature stress (NBTS), hydrogen, low temperature, and a combination of hydrogen and NBTS. The results indicate that devices pretreated with NBTS exhibit increased sensitivity to SEB, whereas those subjected to other pretreatment methods demonstrate decreased sensitivity. In addition, the subthreshold mid-gap technique (SMGT) was employed to differentiate between interface traps and oxide charges, with subsequent technology computer-aided design (TCAD) simulations analyzing their impacts on SEB. The findings reveal that NBTS pretreatment primarily reduces the built-in potential ( $\varphi _{\text {B}}$ ) of parasitic bipolar junction transistor (BJT) conduction by generating oxide charges, thereby increasing SEB sensitivity. Conversely, pretreatments with hydrogen and low temperature promote the conversion of oxide charges into interface traps, resulting in decreased SEB sensitivity. Although the change in SEB sensitivity is relatively small, this research reveals a synergistic interaction between NBTI and SEB, which may lead to premature SEB occurrences and reduce the operational lifespan of power VDMOS transistors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Nuclear Science
IEEE Transactions on Nuclear Science 工程技术-工程:电子与电气
CiteScore
3.70
自引率
27.80%
发文量
314
审稿时长
6.2 months
期刊介绍: The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years. The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1