Lei Zhang;Ting Wu;Jianwei Liu;Zhenyu Guan;Xiaodong Yin
{"title":"An Adaptive Synchronous Lightweight AKA Protocol With Authority Management for Wireless Medical Sensor Networks","authors":"Lei Zhang;Ting Wu;Jianwei Liu;Zhenyu Guan;Xiaodong Yin","doi":"10.1109/JSYST.2024.3519516","DOIUrl":null,"url":null,"abstract":"The advancement of wireless network technology has propelled wireless medical sensor networks (WMSNs) to transform healthcare, offering efficient communication for enhanced quality of life. These networks employ sensitive and resource-efficient sensors to monitor and transmit patients' vital health data to medical professionals through wireless channels. However, the openness of these channels risks unauthorized access and data tampering, jeopardizing patient privacy and treatment efficacy. Ensuring the integrity and confidentiality of health data is crucial. Current authentication and key agreement (AKA) protocols have limitations, including susceptibility to sensor information disclosure and security flaws due to excessive user authority and mismatched pseudorandom identities. Given the resource constraints of WMSNs, traditional cryptographic methods are not always suitable. To overcome these challenges, a lightweight AKA protocol with self-adaptive synchronization and authority management is proposed. Formal verification through the real-or-random model, BAN logic, and ProVerif tool confirms its security and availability, while informal analysis demonstrates its robust security features. Comparative analysis with recent schemes also highlights its superiority and fitness for WMSNs.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"19 1","pages":"200-211"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10818977/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of wireless network technology has propelled wireless medical sensor networks (WMSNs) to transform healthcare, offering efficient communication for enhanced quality of life. These networks employ sensitive and resource-efficient sensors to monitor and transmit patients' vital health data to medical professionals through wireless channels. However, the openness of these channels risks unauthorized access and data tampering, jeopardizing patient privacy and treatment efficacy. Ensuring the integrity and confidentiality of health data is crucial. Current authentication and key agreement (AKA) protocols have limitations, including susceptibility to sensor information disclosure and security flaws due to excessive user authority and mismatched pseudorandom identities. Given the resource constraints of WMSNs, traditional cryptographic methods are not always suitable. To overcome these challenges, a lightweight AKA protocol with self-adaptive synchronization and authority management is proposed. Formal verification through the real-or-random model, BAN logic, and ProVerif tool confirms its security and availability, while informal analysis demonstrates its robust security features. Comparative analysis with recent schemes also highlights its superiority and fitness for WMSNs.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.