Construction of a 0D/2D NixP/LaTiO2N Schottky junction photocatalyst for efficient visible-light-driven photocatalytic CO2 reduction†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2025-02-14 DOI:10.1039/D5CY00004A
Guoyu Xu, Yanan Chen, Peiling Lin, Zizhong Zhang, Tao Ji and Wenyue Su
{"title":"Construction of a 0D/2D NixP/LaTiO2N Schottky junction photocatalyst for efficient visible-light-driven photocatalytic CO2 reduction†","authors":"Guoyu Xu, Yanan Chen, Peiling Lin, Zizhong Zhang, Tao Ji and Wenyue Su","doi":"10.1039/D5CY00004A","DOIUrl":null,"url":null,"abstract":"<p >Employing photocatalytic technology to transform CO<small><sub>2</sub></small> into valuable fuels is considered a promising solution for addressing the exacerbated greenhouse effect and energy crisis. The development of photocatalysts featuring superior charge separation efficiency is pivotal for the widespread implementation of photocatalytic CO<small><sub>2</sub></small> reduction technologies. Herein, zero-dimensional (0D) Ni<small><sub><em>x</em></sub></small>P nanoparticles are anchored onto two-dimensional (2D) LaTiO<small><sub>2</sub></small>N nanosheets by a photo-deposition method, and a Ni<small><sub><em>x</em></sub></small>P/LaTiO<small><sub>2</sub></small>N Schottky junction composite with excellent photocatalytic CO<small><sub>2</sub></small> reduction performance is constructed. The optimal Ni<small><sub><em>x</em></sub></small>P/LaTiO<small><sub>2</sub></small>N composite achieves CO and CH<small><sub>4</sub></small> yields of 9.39 and 4.15 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, respectively, with the utilized photoelectron number (UPN) reaching 51.98 μmol g<small><sup>−1</sup></small>, which is approximately 9.7 times higher than that of LaTiO<small><sub>2</sub></small>N alone. The improved photocatalytic performance of the composites can be attributed to the formation of Schottky junctions, which effectively suppress the recombination of photogenerated carriers. This study provides a new idea for the development of 0D/2D Schottky junction photocatalysts.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 6","pages":" 2027-2033"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d5cy00004a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Employing photocatalytic technology to transform CO2 into valuable fuels is considered a promising solution for addressing the exacerbated greenhouse effect and energy crisis. The development of photocatalysts featuring superior charge separation efficiency is pivotal for the widespread implementation of photocatalytic CO2 reduction technologies. Herein, zero-dimensional (0D) NixP nanoparticles are anchored onto two-dimensional (2D) LaTiO2N nanosheets by a photo-deposition method, and a NixP/LaTiO2N Schottky junction composite with excellent photocatalytic CO2 reduction performance is constructed. The optimal NixP/LaTiO2N composite achieves CO and CH4 yields of 9.39 and 4.15 μmol g−1 h−1, respectively, with the utilized photoelectron number (UPN) reaching 51.98 μmol g−1, which is approximately 9.7 times higher than that of LaTiO2N alone. The improved photocatalytic performance of the composites can be attributed to the formation of Schottky junctions, which effectively suppress the recombination of photogenerated carriers. This study provides a new idea for the development of 0D/2D Schottky junction photocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Back cover Inside back cover Back cover Construction of a 0D/2D NixP/LaTiO2N Schottky junction photocatalyst for efficient visible-light-driven photocatalytic CO2 reduction†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1