Iason Grigoratos, Ryan Schultz, Janneke van Ginkel, Thanushika Gunatilake, Stefan Wiemer, Jorien L.N. van der Wal, Annemarie G. Muntendam-Bos
{"title":"A generic seismic risk protocol for energy production sites","authors":"Iason Grigoratos, Ryan Schultz, Janneke van Ginkel, Thanushika Gunatilake, Stefan Wiemer, Jorien L.N. van der Wal, Annemarie G. Muntendam-Bos","doi":"10.1007/s10518-024-02088-4","DOIUrl":null,"url":null,"abstract":"<div><p>Activities related to energy production have been linked with felt (and in some cases damaging) earthquakes. Notable examples include hydraulic fracturing, wastewater disposal, geothermal systems, coal mining, carbon storage and hydropower dams. As the demand for energy continues to grow, new frontiers in energy exploration will emerge - some with the potential for induced seismicity. Thus, there is a clear need for a source-agnostic seismic risk protocol that can be applied to any activity or region. This study outlines one such implementation that uses scenario earthquakes to produce a priori risk thresholds that can be referenced against current seismicity levels on an ongoing basis. Our framework is designed to inform regulatory decisions by considering the consequences of earthquake scenarios on the population and the built environment, together with simplified forecasts of the next largest magnitude. The proposed framework can tackle both the screening process needed for permitting purposes and serve as a risk management plan during operations.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 4","pages":"1325 - 1347"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-02088-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02088-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Activities related to energy production have been linked with felt (and in some cases damaging) earthquakes. Notable examples include hydraulic fracturing, wastewater disposal, geothermal systems, coal mining, carbon storage and hydropower dams. As the demand for energy continues to grow, new frontiers in energy exploration will emerge - some with the potential for induced seismicity. Thus, there is a clear need for a source-agnostic seismic risk protocol that can be applied to any activity or region. This study outlines one such implementation that uses scenario earthquakes to produce a priori risk thresholds that can be referenced against current seismicity levels on an ongoing basis. Our framework is designed to inform regulatory decisions by considering the consequences of earthquake scenarios on the population and the built environment, together with simplified forecasts of the next largest magnitude. The proposed framework can tackle both the screening process needed for permitting purposes and serve as a risk management plan during operations.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.