Sediment heavy metal speciation of Hirakud Reservoir—a Ramsar site in Mahanadi River in India

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Monitoring and Assessment Pub Date : 2025-03-18 DOI:10.1007/s10661-025-13898-7
Sradhanjali Basti, Chandan Sahu, Pratik Kumar Dash, Sharada Shrinivas Pati, Sanjat Kumar Sahu
{"title":"Sediment heavy metal speciation of Hirakud Reservoir—a Ramsar site in Mahanadi River in India","authors":"Sradhanjali Basti,&nbsp;Chandan Sahu,&nbsp;Pratik Kumar Dash,&nbsp;Sharada Shrinivas Pati,&nbsp;Sanjat Kumar Sahu","doi":"10.1007/s10661-025-13898-7","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy metal speciation is an important tool for the assessment of sediment quality. This work was conducted to investigate the geochemical occurrence, distribution, and spatial variability of sediment heavy metals in the Hirakud Reservoir (a Ramsar site) of the Mahanadi River in India. Estimation based on a single-extraction (speciation) method revealed the dominance of Fe–Mn-bound (39.33%) fractions suggesting the potential mobility of heavy metals. Co-dominance of residual (35.03%) and organic matter–sulfide (23.02%) fractions indicate lattice-bound associations of elements under natural conditions and suggest anthropogenic organic input contribution respectively. The heavy metals distribution was spatially affected (<i>p</i> &lt; 0.05). While, Ag, Cd, Hg, and Mo displayed extremely severe enrichment (EF &gt; 50) and very strong geo-accumulation conditions (<i>I</i><sub>geo</sub> &gt; 5); Cd and Hg displayed very high ecological risk (ERF &gt; 320). However, the contamination factor for all heavy metals except Cd and Hg showcased low contamination (CF &lt; 1). The principal component and cluster analysis revealed that the source of Mn, Mo, Hg, and Ag was mainly from anthropogenic or biogenic origin. The Fe and Al however displayed signs of being derived from multiple sources. However, the risk assessment code (RAC) results suggest that As exhibited a medium to very high risk (11 &lt; RAC &lt; 30) of bio-availability. Thus, the results of this study can be used for the formulation of strategies for the reduction of anthropogenic loads, planning for sediment quality management, and regular monitoring to curb the rising pollution issues of the reservoir.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13898-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal speciation is an important tool for the assessment of sediment quality. This work was conducted to investigate the geochemical occurrence, distribution, and spatial variability of sediment heavy metals in the Hirakud Reservoir (a Ramsar site) of the Mahanadi River in India. Estimation based on a single-extraction (speciation) method revealed the dominance of Fe–Mn-bound (39.33%) fractions suggesting the potential mobility of heavy metals. Co-dominance of residual (35.03%) and organic matter–sulfide (23.02%) fractions indicate lattice-bound associations of elements under natural conditions and suggest anthropogenic organic input contribution respectively. The heavy metals distribution was spatially affected (p < 0.05). While, Ag, Cd, Hg, and Mo displayed extremely severe enrichment (EF > 50) and very strong geo-accumulation conditions (Igeo > 5); Cd and Hg displayed very high ecological risk (ERF > 320). However, the contamination factor for all heavy metals except Cd and Hg showcased low contamination (CF < 1). The principal component and cluster analysis revealed that the source of Mn, Mo, Hg, and Ag was mainly from anthropogenic or biogenic origin. The Fe and Al however displayed signs of being derived from multiple sources. However, the risk assessment code (RAC) results suggest that As exhibited a medium to very high risk (11 < RAC < 30) of bio-availability. Thus, the results of this study can be used for the formulation of strategies for the reduction of anthropogenic loads, planning for sediment quality management, and regular monitoring to curb the rising pollution issues of the reservoir.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
期刊最新文献
Nanofilters to retain dyes and endocrine interferences in water based in glucose-based matrix membranes modified with hybrid nanoarchitecture Sediment heavy metal speciation of Hirakud Reservoir—a Ramsar site in Mahanadi River in India Application of gamma spectrum analysis techniques for natural radioactivity measurements using NaI(Tl) detector Evaluation of health risks and heavy metals toxicity in agricultural soils in Central Saudi Arabia A hybrid vine copula-fuzzy model for groundwater level simulation under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1