Seismic behavior of RC frames with Choh-kat openings: a novel strut model approach

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Bulletin of Earthquake Engineering Pub Date : 2025-02-18 DOI:10.1007/s10518-025-02112-1
Shujaat Hussain Buch, Javed Ahmad Bhat, Muhammad Dilawar Bhat, Mohammad Iqbal Mirza
{"title":"Seismic behavior of RC frames with Choh-kat openings: a novel strut model approach","authors":"Shujaat Hussain Buch,&nbsp;Javed Ahmad Bhat,&nbsp;Muhammad Dilawar Bhat,&nbsp;Mohammad Iqbal Mirza","doi":"10.1007/s10518-025-02112-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the seismic behavior of Masonry Infill Reinforced Concrete (RC) frames with Choh-kat-framed openings, common in the Kashmir region. It challenges traditional assumptions about infill structures, emphasizing their structural significance and providing new insights into how these infills influence seismic performance. The primary focus is on analyzing the impact of Choh-kat-framed openings on the lateral stiffness of RC frames under seismic loading and developing a novel strut model for predicting seismic response. A Finite Element (FE) approach is employed to simulate the complex interactions between the RC frame and Choh-kat-framed infills. The analysis considers several response parameters, including lateral stiffness, crack propagation patterns, load-bearing capacity, and energy dissipation. The study also examines the effects of different opening sizes, aspect ratios, locations, and multiple openings on structural performance. A key innovation is the introduction of an alteration factor <span>\\(\\beta _{wc}\\)</span> to account for stiffness, alongside a new 4-strut model for Choh-kat-framed openings. The results indicate that Choh-kat-framed openings up to 50% of the infill area contribute to decreased stiffness but delay crack propagation. The optimal opening area ratio for enhancing stiffness is 12%. Choh-kat additions significantly increase stiffness, especially at the top corners of the openings. The proposed strut model, validated by FEMA 356 guidelines, accurately predicts equivalent strut widths for pier and spandrel struts. In summary, this study offers a novel approach to understanding the seismic behavior of Masonry Infill RC frames with Choh-kat openings, providing a framework for improved design and retrofitting strategies.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 4","pages":"1639 - 1676"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-025-02112-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the seismic behavior of Masonry Infill Reinforced Concrete (RC) frames with Choh-kat-framed openings, common in the Kashmir region. It challenges traditional assumptions about infill structures, emphasizing their structural significance and providing new insights into how these infills influence seismic performance. The primary focus is on analyzing the impact of Choh-kat-framed openings on the lateral stiffness of RC frames under seismic loading and developing a novel strut model for predicting seismic response. A Finite Element (FE) approach is employed to simulate the complex interactions between the RC frame and Choh-kat-framed infills. The analysis considers several response parameters, including lateral stiffness, crack propagation patterns, load-bearing capacity, and energy dissipation. The study also examines the effects of different opening sizes, aspect ratios, locations, and multiple openings on structural performance. A key innovation is the introduction of an alteration factor \(\beta _{wc}\) to account for stiffness, alongside a new 4-strut model for Choh-kat-framed openings. The results indicate that Choh-kat-framed openings up to 50% of the infill area contribute to decreased stiffness but delay crack propagation. The optimal opening area ratio for enhancing stiffness is 12%. Choh-kat additions significantly increase stiffness, especially at the top corners of the openings. The proposed strut model, validated by FEMA 356 guidelines, accurately predicts equivalent strut widths for pier and spandrel struts. In summary, this study offers a novel approach to understanding the seismic behavior of Masonry Infill RC frames with Choh-kat openings, providing a framework for improved design and retrofitting strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
期刊最新文献
Seismic behavior of RC frames with Choh-kat openings: a novel strut model approach Correction To: Characterisation of the rigid diaphragm conditions for cross laminated timber floors A generic seismic risk protocol for energy production sites The contribution of source parameter estimations and ground motion simulations in integrating input data for seismic hazard assessment: an application to the volcanic island of Ischia (Italy) Fling amplitude inventory of near-fault strong motion recordings in Turkiye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1