{"title":"Preparation of bio-based polyamide 56/chitosan heavy metal adsorbing nanocomposite fibers by electrospinning","authors":"Yuhan Xu, Jinheng Wang, Chenyan Zhang, Jikui Wang, Weihong Guo","doi":"10.1002/vnl.22183","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Electrospinning technology can produce nanofibers with extremely high specific surface area. Bio-based polyamide 56 (PA56) was combined with chitosan (CS) to prepare PA56/CS composite nanofibers. An in vitro mineralization experiment was conducted to obtain a super hydrophilic composite fiber (PA56/CS-HAP) with hydroxyapatite deposited on the surface. The adsorption performance of the composite fiber (PA56/CS-HAP) was evaluated by the adsorbent dosage, solution pH value, and adsorption kinetics. The curves obtained after fitting the kinetics and adsorption isotherms show that the adsorption behavior under pH = 6 is more consistent with the Langmuir adsorption model. The adsorption capacity in a 100 mg L<sup>−1</sup> Pb<sup>2+</sup> environment is more than 5 times that of 10 mg L<sup>−1</sup>. Bio-based PA56/CS static-spun nanocomposite fibers prepared by in vitro mineralization have great potential in environmental protection, sensors, chemical engineering, and other fields.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>PA/CS fibers were prepared by electrospinning.</li>\n \n <li>Hydroxyapatite was deposited by in vitro mineralization technique.</li>\n \n <li>PA/CS-HAP fiber achieves super hydrophilic effect.</li>\n \n <li>The adsorption capacity of PA/CS-HAP in 100 mg L<sup>−1</sup> Pb(II) reached 27.5 mg g<sup>−1</sup>.</li>\n \n <li>After fitting, the adsorption process is consistent with Langmuir adsorption.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":17662,"journal":{"name":"Journal of Vinyl & Additive Technology","volume":"31 2","pages":"469-486"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vinyl & Additive Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/vnl.22183","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Electrospinning technology can produce nanofibers with extremely high specific surface area. Bio-based polyamide 56 (PA56) was combined with chitosan (CS) to prepare PA56/CS composite nanofibers. An in vitro mineralization experiment was conducted to obtain a super hydrophilic composite fiber (PA56/CS-HAP) with hydroxyapatite deposited on the surface. The adsorption performance of the composite fiber (PA56/CS-HAP) was evaluated by the adsorbent dosage, solution pH value, and adsorption kinetics. The curves obtained after fitting the kinetics and adsorption isotherms show that the adsorption behavior under pH = 6 is more consistent with the Langmuir adsorption model. The adsorption capacity in a 100 mg L−1 Pb2+ environment is more than 5 times that of 10 mg L−1. Bio-based PA56/CS static-spun nanocomposite fibers prepared by in vitro mineralization have great potential in environmental protection, sensors, chemical engineering, and other fields.
Highlights
PA/CS fibers were prepared by electrospinning.
Hydroxyapatite was deposited by in vitro mineralization technique.
PA/CS-HAP fiber achieves super hydrophilic effect.
The adsorption capacity of PA/CS-HAP in 100 mg L−1 Pb(II) reached 27.5 mg g−1.
After fitting, the adsorption process is consistent with Langmuir adsorption.
期刊介绍:
Journal of Vinyl and Additive Technology is a peer-reviewed technical publication for new work in the fields of polymer modifiers and additives, vinyl polymers and selected review papers. Over half of all papers in JVAT are based on technology of additives and modifiers for all classes of polymers: thermoset polymers and both condensation and addition thermoplastics. Papers on vinyl technology include PVC additives.