Experimental Study on Polymer–Polymer Interfacial Thermal Resistance

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Macromolecular Theory and Simulations Pub Date : 2024-12-23 DOI:10.1002/mats.202400088
Yinfeng Xia, Takushi Saito, Tatsuya Kawaguchi
{"title":"Experimental Study on Polymer–Polymer Interfacial Thermal Resistance","authors":"Yinfeng Xia,&nbsp;Takushi Saito,&nbsp;Tatsuya Kawaguchi","doi":"10.1002/mats.202400088","DOIUrl":null,"url":null,"abstract":"<p>This study presents an experimental measurement of interfacial thermal resistance (ITR) at polymer–polymer interfaces using a multi-layered bulk sample approach. ITR is commonly measured using thin-film techniques, but new advancements enable testing in bulk materials with multilayered structures. However, traditional multilayer fabrication is often resource-intensive and lacks consistency. This study introduces a simple rotational overlapping method for fabricating multi-layered polymer samples for bulk ITR measurement. Combining numerical simulations with experimental validation, researchers optimize layer overlapping conditions using measured viscosity data of high-density polyethylene (HDPE), polypropylene (PP), and polylactic acid (PLA). Samples are fabricated at viscosity-matching temperatures, and shear forces from stirring disks create uniform layer patterns. Computational fluid dynamics (CFD) simulations elucidate the layer formation mechanism, enabling the fabrication of samples with over 112 layers within a 4.6 mm thickness. ITR testing reveals a direct correlation between layer number and thermal resistance. PE-PP samples exhibit an average ITR of 9.58 × 10<sup>−6</sup> K m<sup>2</sup> W<sup>−1</sup>, with a 10.32% increase in resistance from 38 to 112 layers. Similarly, PE-PLA samples with an ITR of 1.31 × 10<sup>−5</sup> K m<sup>2</sup> W<sup>−1</sup> show a 2.8% increase from 5 to 23 layers. Overall, The experimental procedure provides valuable data to advance the understanding of ITR in polymer–polymer interfaces.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202400088","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202400088","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an experimental measurement of interfacial thermal resistance (ITR) at polymer–polymer interfaces using a multi-layered bulk sample approach. ITR is commonly measured using thin-film techniques, but new advancements enable testing in bulk materials with multilayered structures. However, traditional multilayer fabrication is often resource-intensive and lacks consistency. This study introduces a simple rotational overlapping method for fabricating multi-layered polymer samples for bulk ITR measurement. Combining numerical simulations with experimental validation, researchers optimize layer overlapping conditions using measured viscosity data of high-density polyethylene (HDPE), polypropylene (PP), and polylactic acid (PLA). Samples are fabricated at viscosity-matching temperatures, and shear forces from stirring disks create uniform layer patterns. Computational fluid dynamics (CFD) simulations elucidate the layer formation mechanism, enabling the fabrication of samples with over 112 layers within a 4.6 mm thickness. ITR testing reveals a direct correlation between layer number and thermal resistance. PE-PP samples exhibit an average ITR of 9.58 × 10−6 K m2 W−1, with a 10.32% increase in resistance from 38 to 112 layers. Similarly, PE-PLA samples with an ITR of 1.31 × 10−5 K m2 W−1 show a 2.8% increase from 5 to 23 layers. Overall, The experimental procedure provides valuable data to advance the understanding of ITR in polymer–polymer interfaces.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本研究采用多层块状样品方法,对聚合物-聚合物界面的界面热阻(ITR)进行了实验测量。界面热阻通常使用薄膜技术进行测量,但新技术的进步使得在具有多层结构的块状材料中进行测试成为可能。然而,传统的多层制造通常需要耗费大量资源,而且缺乏一致性。本研究介绍了一种简单的旋转重叠方法,用于制造多层聚合物样品,以进行块体 ITR 测量。结合数值模拟和实验验证,研究人员利用高密度聚乙烯(HDPE)、聚丙烯(PP)和聚乳酸(PLA)的测量粘度数据优化了层重叠条件。样品在粘度匹配的温度下制作,搅拌盘产生的剪切力形成均匀的层模式。计算流体动力学(CFD)模拟阐明了层的形成机制,从而在 4.6 毫米的厚度内制作出超过 112 层的样品。ITR 测试表明,层数与热阻之间存在直接关联。PE-PP 样品的平均 ITR 为 9.58 × 10-6 K m2 W-1,从 38 层到 112 层,电阻增加了 10.32%。同样,PE-PLA 样品的内阻为 1.31 × 10-5 K m2 W-1,从 5 层到 23 层,内阻增加了 2.8%。总之,该实验过程提供了宝贵的数据,有助于加深对聚合物-聚合物界面中 ITR 的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
期刊最新文献
Front Cover: Macromol. Theory Simul. 2/2025 Issue Information: Macromol. Theory Simul. 2/2025 Front Cover: Macromol. Theory Simul. 1/2025 Issue Information: Macromol. Theory Simul. 1/2025 Experimental Study on Polymer–Polymer Interfacial Thermal Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1