Photosynthesis of H2O2 using Phenothiazine-Based Covalent-Organic Frameworks Mimicking Coenzyme Q

Yaoyao Peng, Lewang Yuan, Kang-Kai Liu, Dr. Zong-Jie Guan, Prof. Dr. Shangbin Jin, Prof. Dr. Yu Fang
{"title":"Photosynthesis of H2O2 using Phenothiazine-Based Covalent-Organic Frameworks Mimicking Coenzyme Q","authors":"Yaoyao Peng,&nbsp;Lewang Yuan,&nbsp;Kang-Kai Liu,&nbsp;Dr. Zong-Jie Guan,&nbsp;Prof. Dr. Shangbin Jin,&nbsp;Prof. Dr. Yu Fang","doi":"10.1002/ange.202423055","DOIUrl":null,"url":null,"abstract":"<p>Mimicking natural enzymes through artificial enzyme engineering represents a powerful strategy to fine-tune the performance of photocatalysts, while the manipulation of electron transfer systems through atomic precision control is challenging. Herein, we reported a series of covalent organic frameworks (COFs) based on progressively oxidized phenothiazine (PTH) core as the platform for emulating Coenzyme Q, achieved through meticulous stepwise adjustments of their redox states. Compared to the original <b>PTH-S-COF</b>, the COFs with incrementally oxidized sulfur sites exhibited enhanced charge transfer efficiencies, facilitating efficient electron donation to O<sub>2</sub> and thereby providing a favorable pathway for H<sub>2</sub>O<sub>2</sub> synthesis. Notably, the <b>PTH-SO<sub>2</sub>-COF</b> achieved a remarkable synthesis rate of 7755 μmol g<sup>−1</sup> h<sup>−1</sup>, marking a 720 % improvement over the <b>PTH-S-COF</b> baseline. Furthermore, upon adjusting the sacrificial agent ratio, this rate soared to an impressive 13565 μmol g<sup>−1</sup> h<sup>−1</sup>, surpassing the most reported photo-active COFs. In situ characterizations and simulations verified that three H<sub>2</sub>O<sub>2</sub> evolution pathways (2e<sup>−</sup> ORR, 4e<sup>−</sup> OER, and 4e<sup>−</sup> ORR) all involved in the H<sub>2</sub>O<sub>2</sub> production process. As a result, our findings introduce a novel pathway for the development of high-performance COF-based photocatalysts through the innovative application of artificial enzyme-mimicking techniques.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202423055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mimicking natural enzymes through artificial enzyme engineering represents a powerful strategy to fine-tune the performance of photocatalysts, while the manipulation of electron transfer systems through atomic precision control is challenging. Herein, we reported a series of covalent organic frameworks (COFs) based on progressively oxidized phenothiazine (PTH) core as the platform for emulating Coenzyme Q, achieved through meticulous stepwise adjustments of their redox states. Compared to the original PTH-S-COF, the COFs with incrementally oxidized sulfur sites exhibited enhanced charge transfer efficiencies, facilitating efficient electron donation to O2 and thereby providing a favorable pathway for H2O2 synthesis. Notably, the PTH-SO2-COF achieved a remarkable synthesis rate of 7755 μmol g−1 h−1, marking a 720 % improvement over the PTH-S-COF baseline. Furthermore, upon adjusting the sacrificial agent ratio, this rate soared to an impressive 13565 μmol g−1 h−1, surpassing the most reported photo-active COFs. In situ characterizations and simulations verified that three H2O2 evolution pathways (2e ORR, 4e OER, and 4e ORR) all involved in the H2O2 production process. As a result, our findings introduce a novel pathway for the development of high-performance COF-based photocatalysts through the innovative application of artificial enzyme-mimicking techniques.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于吩噻嗪的模拟辅酶Q共价有机框架对H2O2的光合作用
通过人工酶工程模拟天然酶是微调光催化剂性能的有力策略,而通过原子精度控制操纵电子转移系统则具有挑战性。在此,我们报道了一系列基于渐进式氧化吩噻嗪(PTH)核心作为模拟辅酶Q平台的共价有机框架(COFs),通过细致的逐步调整其氧化还原状态来实现。与原始的PTH-S-COF相比,硫位点逐渐氧化的COFs表现出更强的电荷转移效率,有利于给氧电子,从而为H2O2的合成提供了有利的途径。值得注意的是,PTH-SO2-COF的合成速率为7755 μmol g−1 h−1,比PTH-S-COF基线提高了720%。此外,在调整牺牲剂的比例后,这一速率飙升至惊人的13565 μmol g−1 h−1,超过了大多数报道的光活性COFs。原位表征和模拟验证了H2O2的三种进化途径(2e - ORR, 4e - OER和4e - ORR)都参与了H2O2的产生过程。因此,我们的研究结果通过人工酶模拟技术的创新应用,为开发高性能的cof基光催化剂提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Frontispiece: A General Strategy to Develop Intramolecular Spirocyclic Boron Dipyrromethene Fluorophores for Self-Blinking Super-Resolution Imaging Frontispiece: Finding the Key: Binding of Metal-Oxo Clusters to the Enzyme Active Site Enabled by “Click” (Bio)Conjugation Frontispiece: Carbonothioate-Triggered Cascade Cyclization Enables High-Specificity Fluorescence Imaging of Hydrogen Polysulfides Frontispiece: Panchromatic Gold Alkynyl Complexes with Pyrenyl-N-Heterocyclic Carbene Ligand Displaying Anti-Kasha Behavior A Crystalline Bismuth(II) Radical Anion: Synthesis, Characterization, and Reactivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1