Chengqian Feng, Jingrong Shi, Yunfu Chen, Sisi Chen, Jianping Cui, Jun Zhang, Xiaowen Zheng, Yaping Wang, Feng Li
{"title":"A hepatitis B virus-free cccDNA-producing stable cell for antiviral screening.","authors":"Chengqian Feng, Jingrong Shi, Yunfu Chen, Sisi Chen, Jianping Cui, Jun Zhang, Xiaowen Zheng, Yaping Wang, Feng Li","doi":"10.1016/j.antiviral.2025.106143","DOIUrl":null,"url":null,"abstract":"<p><p>The covalently closed circular DNA (cccDNA) of the Hepatitis B virus (HBV) serves as a template for producing progeny viruses in virally infected hepatocytes. Promising cccDNA-targeting antiviral agents remain unavailable and unpredictable in the research and development pipelines, making sterile HBV elimination challenging at the current stage. The major challenge of discriminating trace amounts of cccDNA from the abundant HBV relaxed circular DNA (rcDNA), which is nearly identical to cccDNA in sequence, substantially discourages efforts to discover and directly screen cccDNA-targeting drugs. Therefore, an easy cccDNA cell culture system is required for high-throughput drug screening. In this study, we designed an HBV cccDNA self-generating stable cell culture system using a functional complementary concept and successfully generated an HBV cccDNA Gaussia luciferase reporter cell line in HepG2 and Huh7 cells. This design ensures that the Gluc signal is exclusively expressed upon cccDNA formation, allowing for the accurate and easy measurement of cccDNA levels via luminescent signals. Using this system, in conjunction with a firefly luciferase reporter to monitor cell activity, we screened 2,074 drugs in the HepG2-HBV-cccDNA/Firefly cell line. Four compounds were selected for further experimentation and their anti-HBV effects were confirmed. Thus, this virus-free hepatitis B cccDNA cell culture system provides a valuable and convenient platform for the high-throughput screening of anti-HBV drugs.</p>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":" ","pages":"106143"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.antiviral.2025.106143","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The covalently closed circular DNA (cccDNA) of the Hepatitis B virus (HBV) serves as a template for producing progeny viruses in virally infected hepatocytes. Promising cccDNA-targeting antiviral agents remain unavailable and unpredictable in the research and development pipelines, making sterile HBV elimination challenging at the current stage. The major challenge of discriminating trace amounts of cccDNA from the abundant HBV relaxed circular DNA (rcDNA), which is nearly identical to cccDNA in sequence, substantially discourages efforts to discover and directly screen cccDNA-targeting drugs. Therefore, an easy cccDNA cell culture system is required for high-throughput drug screening. In this study, we designed an HBV cccDNA self-generating stable cell culture system using a functional complementary concept and successfully generated an HBV cccDNA Gaussia luciferase reporter cell line in HepG2 and Huh7 cells. This design ensures that the Gluc signal is exclusively expressed upon cccDNA formation, allowing for the accurate and easy measurement of cccDNA levels via luminescent signals. Using this system, in conjunction with a firefly luciferase reporter to monitor cell activity, we screened 2,074 drugs in the HepG2-HBV-cccDNA/Firefly cell line. Four compounds were selected for further experimentation and their anti-HBV effects were confirmed. Thus, this virus-free hepatitis B cccDNA cell culture system provides a valuable and convenient platform for the high-throughput screening of anti-HBV drugs.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.