Micro/nanomotors in targeted drug delivery: Advances, challenges, and future directions.

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-03-14 DOI:10.1016/j.ijpharm.2025.125471
Hui Ma, Rui-Fang Li, Zi-Li Yu
{"title":"Micro/nanomotors in targeted drug delivery: Advances, challenges, and future directions.","authors":"Hui Ma, Rui-Fang Li, Zi-Li Yu","doi":"10.1016/j.ijpharm.2025.125471","DOIUrl":null,"url":null,"abstract":"<p><p>The therapeutic efficacy of drugs is highly dependent on their successful delivery to the target site. However, achieving targeted drug delivery to diseased areas remains a significant challenge. Current drug delivery systems based on nanocarriers often suffer from inefficiencies due to their lack of intrinsic propulsion and active targeting capabilities. Micro/nanomotors (MNMs), which are miniature machines capable of converting chemical or external energy into mechanical energy, offer a promising solution. Unlike traditional nanoparticles (NPs) that rely on passive diffusion through blood circulation, MNMs exhibit active locomotion, providing a significant advantage in future drug delivery applications. This review primarily focuses on the progress in research of MNMs in the realm of drug delivery. We present a succinct overview of MNMs and subsequently classify them based on their modes of mobility. Then we comprehensively summarize the applications of micro/nanomotor-based drug delivery systems in the treatment of various diseases, including cancer, bacterial infections, cardiovascular diseases, and others. Based on the current research status, we summarize the potential challenges, possible solutions, and prospect several key directions for future studies in active-targeted drug delivery using MNMs. Future research should focus on improving motor delivery efficiency, biosafety measures, productivity, and maneuverability.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"125471"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2025.125471","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The therapeutic efficacy of drugs is highly dependent on their successful delivery to the target site. However, achieving targeted drug delivery to diseased areas remains a significant challenge. Current drug delivery systems based on nanocarriers often suffer from inefficiencies due to their lack of intrinsic propulsion and active targeting capabilities. Micro/nanomotors (MNMs), which are miniature machines capable of converting chemical or external energy into mechanical energy, offer a promising solution. Unlike traditional nanoparticles (NPs) that rely on passive diffusion through blood circulation, MNMs exhibit active locomotion, providing a significant advantage in future drug delivery applications. This review primarily focuses on the progress in research of MNMs in the realm of drug delivery. We present a succinct overview of MNMs and subsequently classify them based on their modes of mobility. Then we comprehensively summarize the applications of micro/nanomotor-based drug delivery systems in the treatment of various diseases, including cancer, bacterial infections, cardiovascular diseases, and others. Based on the current research status, we summarize the potential challenges, possible solutions, and prospect several key directions for future studies in active-targeted drug delivery using MNMs. Future research should focus on improving motor delivery efficiency, biosafety measures, productivity, and maneuverability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
靶向给药中的微型/纳米电机:进展、挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Multifunctional sorafenib-loaded MXene for enhanced cancer therapy: In vitro and in vivo study based on chemotherapy/photothermal therapy approach. Cancer cell membrane-coated sulindac-ortho ester nanoprodrug for inhibiting COX-2 expression and chemo-photothermal synergistic antitumor therapy. Hurdles to healing: Overcoming cellular barriers for viral and nonviral gene therapy. Stability of intravenous antibody dilutions in clinical use: Differences across patient populations with varying body weights. Enhanced antibacterial efficacy of new benzothiazole phthalimide hybrid compounds/methyl-β-cyclodextrin inclusion complexes compared to the free forms: Insights into the possible mode of action
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1