Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy.

IF 10.3 1区 医学 Q1 IMMUNOLOGY Journal for Immunotherapy of Cancer Pub Date : 2025-03-15 DOI:10.1136/jitc-2024-011149
Zhen Zhang, Tianchen Luo, Meng Yan, Haixia Shen, Kaiyi Tao, Jian Zeng, Jingping Yuan, Min Fang, Jian Zheng, Inigo Bermejo, Andre Dekker, Dirk De Ruysscher, Leonard Wee, Wencheng Zhang, Youhua Jiang, Yongling Ji
{"title":"Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy.","authors":"Zhen Zhang, Tianchen Luo, Meng Yan, Haixia Shen, Kaiyi Tao, Jian Zeng, Jingping Yuan, Min Fang, Jian Zheng, Inigo Bermejo, Andre Dekker, Dirk De Ruysscher, Leonard Wee, Wencheng Zhang, Youhua Jiang, Yongling Ji","doi":"10.1136/jitc-2024-011149","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate prediction of pathologic complete response (pCR) following neoadjuvant immunotherapy combined with chemotherapy (nICT) is crucial for tailoring patient care in esophageal squamous cell carcinoma (ESCC). This study aimed to develop and validate a deep learning model using a novel voxel-level radiomics approach to predict pCR based on preoperative CT images.</p><p><strong>Methods: </strong>In this multicenter, retrospective study, 741 patients with ESCC who underwent nICT followed by radical esophagectomy were enrolled from three institutions. Patients from one center were divided into a training set (469 patients) and an internal validation set (118 patients) while the data from the other two centers was used as external validation sets (120 and 34 patients, respectively). The deep learning model, Vision-Mamba, integrated voxel-level radiomics feature maps and CT images for pCR prediction. Additionally, other commonly used deep learning models, including 3D-ResNet and Vision Transformer, as well as traditional radiomics methods, were developed for comparison. Model performance was evaluated using accuracy, area under the curve (AUC), sensitivity, specificity, and prognostic stratification capabilities. The SHapley Additive exPlanations analysis was employed to interpret the model's predictions.</p><p><strong>Results: </strong>The Vision-Mamba model demonstrated robust predictive performance in the training set (accuracy: 0.89, AUC: 0.91, sensitivity: 0.82, specificity: 0.92) and validation sets (accuracy: 0.83-0.91, AUC: 0.83-0.92, sensitivity: 0.73-0.94, specificity: 0.84-1.0). The model outperformed other deep learning models and traditional radiomics methods. The model's ability to stratify patients into high and low-risk groups was validated, showing superior prognostic stratification compared with traditional methods. SHAP provided quantitative and visual model interpretation.</p><p><strong>Conclusions: </strong>We present a voxel-level radiomics-based deep learning model to predict pCR to neoadjuvant immunotherapy combined with chemotherapy based on pretreatment diagnostic CT images with high accuracy and robustness. This model could provide a promising tool for individualized management of patients with ESCC.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 3","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-011149","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate prediction of pathologic complete response (pCR) following neoadjuvant immunotherapy combined with chemotherapy (nICT) is crucial for tailoring patient care in esophageal squamous cell carcinoma (ESCC). This study aimed to develop and validate a deep learning model using a novel voxel-level radiomics approach to predict pCR based on preoperative CT images.

Methods: In this multicenter, retrospective study, 741 patients with ESCC who underwent nICT followed by radical esophagectomy were enrolled from three institutions. Patients from one center were divided into a training set (469 patients) and an internal validation set (118 patients) while the data from the other two centers was used as external validation sets (120 and 34 patients, respectively). The deep learning model, Vision-Mamba, integrated voxel-level radiomics feature maps and CT images for pCR prediction. Additionally, other commonly used deep learning models, including 3D-ResNet and Vision Transformer, as well as traditional radiomics methods, were developed for comparison. Model performance was evaluated using accuracy, area under the curve (AUC), sensitivity, specificity, and prognostic stratification capabilities. The SHapley Additive exPlanations analysis was employed to interpret the model's predictions.

Results: The Vision-Mamba model demonstrated robust predictive performance in the training set (accuracy: 0.89, AUC: 0.91, sensitivity: 0.82, specificity: 0.92) and validation sets (accuracy: 0.83-0.91, AUC: 0.83-0.92, sensitivity: 0.73-0.94, specificity: 0.84-1.0). The model outperformed other deep learning models and traditional radiomics methods. The model's ability to stratify patients into high and low-risk groups was validated, showing superior prognostic stratification compared with traditional methods. SHAP provided quantitative and visual model interpretation.

Conclusions: We present a voxel-level radiomics-based deep learning model to predict pCR to neoadjuvant immunotherapy combined with chemotherapy based on pretreatment diagnostic CT images with high accuracy and robustness. This model could provide a promising tool for individualized management of patients with ESCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal for Immunotherapy of Cancer
Journal for Immunotherapy of Cancer Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
17.70
自引率
4.60%
发文量
522
审稿时长
18 weeks
期刊介绍: The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.
期刊最新文献
Progesterone receptor-dependent downregulation of MHC class I promotes tumor immune evasion and growth in breast cancer. Comprehensive immunophenotyping of gastric adenocarcinoma identifies an inflamed class of tumors amenable to immunotherapies. Nivolumab adjuvant to chemo-radiation in localized muscle-invasive urothelial cancer: primary analysis of a multicenter, single-arm, phase II, investigator-initiated trial (NEXT). Addendum 1: Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of melanoma, version 3.0. Cyclin E1 overexpression triggers interferon signaling and is associated with antitumor immunity in breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1