Pub Date : 2025-01-22DOI: 10.1136/jitc-2024-010569
Charalampos S Floudas, Siranush Sarkizova, Michele Ceccarelli, Wei Zheng
The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response. Tumor neoantigens are de novo epitopes derived from somatic mutations, avoiding T-cell central tolerance of self-epitopes and inducing immune responses to tumors. The identification and prioritization of patient-specific tumor neoantigens are based on advanced computational algorithms taking advantage of the profiling with next-generation sequencing considering factors involved in human leukocyte antigen (HLA)-peptide-T-cell receptor (TCR) complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. This review discusses the development and clinical application of mRNA vaccines in oncology, with a particular focus on recent clinical trials and the computational workflows and methodologies for identifying both shared and individual antigens. While this review centers on therapeutic mRNA vaccines targeting existing tumors, it does not cover preventative vaccines. Preclinical experimental validations are crucial in cancer vaccine development, but we emphasize the computational approaches that facilitate neoantigen selection and design, highlighting their role in advancing mRNA vaccine development. The versatility and rapid development potential of mRNA make it an ideal platform for personalized neoantigen immunotherapy. We explore various strategies for antigen target identification, including tumor-associated and tumor-specific antigens and the computational tools used to predict epitopes capable of eliciting strong immune responses. We address key design considerations for enhancing the immunogenicity and stability of mRNA vaccines, as well as emerging trends and challenges in the field. This comprehensive overview highlights the therapeutic potential of mRNA-based cancer vaccines and underscores ongoing research efforts aimed at optimizing these therapies for improved clinical outcomes.
{"title":"Leveraging mRNA technology for antigen based immuno-oncology therapies.","authors":"Charalampos S Floudas, Siranush Sarkizova, Michele Ceccarelli, Wei Zheng","doi":"10.1136/jitc-2024-010569","DOIUrl":"https://doi.org/10.1136/jitc-2024-010569","url":null,"abstract":"<p><p>The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response. Tumor neoantigens are de novo epitopes derived from somatic mutations, avoiding T-cell central tolerance of self-epitopes and inducing immune responses to tumors. The identification and prioritization of patient-specific tumor neoantigens are based on advanced computational algorithms taking advantage of the profiling with next-generation sequencing considering factors involved in human leukocyte antigen (HLA)-peptide-T-cell receptor (TCR) complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. This review discusses the development and clinical application of mRNA vaccines in oncology, with a particular focus on recent clinical trials and the computational workflows and methodologies for identifying both shared and individual antigens. While this review centers on therapeutic mRNA vaccines targeting existing tumors, it does not cover preventative vaccines. Preclinical experimental validations are crucial in cancer vaccine development, but we emphasize the computational approaches that facilitate neoantigen selection and design, highlighting their role in advancing mRNA vaccine development. The versatility and rapid development potential of mRNA make it an ideal platform for personalized neoantigen immunotherapy. We explore various strategies for antigen target identification, including tumor-associated and tumor-specific antigens and the computational tools used to predict epitopes capable of eliciting strong immune responses. We address key design considerations for enhancing the immunogenicity and stability of mRNA vaccines, as well as emerging trends and challenges in the field. This comprehensive overview highlights the therapeutic potential of mRNA-based cancer vaccines and underscores ongoing research efforts aimed at optimizing these therapies for improved clinical outcomes.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1136/jitc-2024-010113
Ana Carneiro, Amanda Hahn, Peter Ellmark, Karin Enell Smith, Lena Schultz, Sumeet Ambarkhane, Jeffrey Yachnin, Gustav J Ullenhag
Background: ATOR-1017 (evunzekibart) is a human agonistic immunoglobulin G4 antibody targeting the costimulatory receptor 4-1BB (CD137). ATOR-1017 activates T cells and natural killer cells in the tumor environment, leading to immune-mediated tumor cell death.
Methods: In this first-in-human, multicenter, phase I study, ATOR-1017 was administered intravenously every 21 days as a monotherapy to patients with advanced, unresectable solid tumors having received multiple standard-of-care treatments. The study used single patient cohorts for rapid dose escalation up to 40 mg; thereafter a modified 3+3 design up to 900 mg. Escalating doses were given until disease progression, unacceptable toxicity, or withdrawal of consent. The primary objective of the study included determination of the maximum tolerated dose (MTD) via assessment of adverse events and dose-limiting toxicities (DLTs). Secondary objectives included determination of the pharmacokinetics, immunogenicity and clinical efficacy assessed with CT scans using immune Response Evaluation Criteria in Solid Tumors. Exploratory objectives included pharmacodynamic (PD) assessment of immune system biomarkers.
Results: Of the 27 patients screened, 25 received treatment with ATOR-1017. The median time on study was 13.1 weeks (range 4.3-92.3). The MTD of ATOR-1017 was not reached. Treatment-related adverse events (TRAEs) were reported in 13 (52%) of 25 patients; most common (≥10%) were fatigue (n=4 (16.0%) patients) and neutropenia (n=3 (12.0%) patients). Five patients experienced a severe (≥ grade 3) TRAE; neutropenia (n=2), febrile neutropenia (n=1), chest pain (n=1), increased liver enzymes (n=1), and leukopenia and thrombocytopenia (n=1). No patients discontinued due to TRAEs and no DLTs were observed. Pharmacokinetic data demonstrated approximate dose-proportional kinetics. Dose-dependent increases in PD biomarkers, including soluble 4-1BB, are indicative of target-mediated biological activity. Best response was stable disease in 13 out of 25 patients (52%), maintained for 6 months or longer in six patients (24%).
Conclusions: Treatment with ATOR-1017 was safe and well tolerated at all dose levels and demonstrated biological activity. Furthermore, almost one-third of patients experienced long-lasting stable disease in this heavily pretreated population. The encouraging safety and preliminary efficacy data warrant further clinical development of ATOR-1017, possibly in combination with other anticancer agents.
{"title":"First-in-human, multicenter, open-label, phase I study of ATOR-1017 (evunzekibart), a 4-1BB antibody, in patients with advanced solid malignancies.","authors":"Ana Carneiro, Amanda Hahn, Peter Ellmark, Karin Enell Smith, Lena Schultz, Sumeet Ambarkhane, Jeffrey Yachnin, Gustav J Ullenhag","doi":"10.1136/jitc-2024-010113","DOIUrl":"https://doi.org/10.1136/jitc-2024-010113","url":null,"abstract":"<p><strong>Background: </strong>ATOR-1017 (evunzekibart) is a human agonistic immunoglobulin G4 antibody targeting the costimulatory receptor 4-1BB (CD137). ATOR-1017 activates T cells and natural killer cells in the tumor environment, leading to immune-mediated tumor cell death.</p><p><strong>Methods: </strong>In this first-in-human, multicenter, phase I study, ATOR-1017 was administered intravenously every 21 days as a monotherapy to patients with advanced, unresectable solid tumors having received multiple standard-of-care treatments. The study used single patient cohorts for rapid dose escalation up to 40 mg; thereafter a modified 3+3 design up to 900 mg. Escalating doses were given until disease progression, unacceptable toxicity, or withdrawal of consent. The primary objective of the study included determination of the maximum tolerated dose (MTD) via assessment of adverse events and dose-limiting toxicities (DLTs). Secondary objectives included determination of the pharmacokinetics, immunogenicity and clinical efficacy assessed with CT scans using immune Response Evaluation Criteria in Solid Tumors. Exploratory objectives included pharmacodynamic (PD) assessment of immune system biomarkers.</p><p><strong>Results: </strong>Of the 27 patients screened, 25 received treatment with ATOR-1017. The median time on study was 13.1 weeks (range 4.3-92.3). The MTD of ATOR-1017 was not reached. Treatment-related adverse events (TRAEs) were reported in 13 (52%) of 25 patients; most common (≥10%) were fatigue (n=4 (16.0%) patients) and neutropenia (n=3 (12.0%) patients). Five patients experienced a severe (≥ grade 3) TRAE; neutropenia (n=2), febrile neutropenia (n=1), chest pain (n=1), increased liver enzymes (n=1), and leukopenia and thrombocytopenia (n=1). No patients discontinued due to TRAEs and no DLTs were observed. Pharmacokinetic data demonstrated approximate dose-proportional kinetics. Dose-dependent increases in PD biomarkers, including soluble 4-1BB, are indicative of target-mediated biological activity. Best response was stable disease in 13 out of 25 patients (52%), maintained for 6 months or longer in six patients (24%).</p><p><strong>Conclusions: </strong>Treatment with ATOR-1017 was safe and well tolerated at all dose levels and demonstrated biological activity. Furthermore, almost one-third of patients experienced long-lasting stable disease in this heavily pretreated population. The encouraging safety and preliminary efficacy data warrant further clinical development of ATOR-1017, possibly in combination with other anticancer agents.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1136/jitc-2024-009832
Céline Godfroid, Jackeline Romero, Sara Labiano, Chia-Hsien Chuang, Andrea Kelemen, Tania Wyss, Vincent Roh, Grégory Verdeil, Christian Klein, Laura Codarri Deak, Pablo Umaña, Genrich V Tolstonog, Christine Trumpfheller, Marie-Catherine Vozenin, Pedro J Romero
Background: More efficient therapeutic options for non-small cell lung cancer (NSCLC) are needed as the survival at 5 years of metastatic disease is near zero. In this regard, we used a preclinical model of metastatic lung adenocarcinoma (SV2-OVA) to assess the safety and efficacy of novel radio-immunotherapy combining hypofractionated radiotherapy (HRT) with muPD1-IL2v immunocytokine and muFAP-CD40 bispecific antibody.
Methods: We evaluated the changes in the lung immune microenvironment at multiple timepoints following combination therapies and investigated their underlying antitumor mechanisms. Additionally, we analyzed the tumor clonal heterogeneity upon the combination treatments to explore potential mechanisms associated with the lack of complete response.
Results: The combination of HRT with muPD1-IL2v had a potent antitumor effect and increased survival in the SV2-OVA lung cancer model. Importantly, this combination therapy was devoid of measurable toxicity. It induced remodeling of the immune contexture through the increase of CD8+ T and natural killer (NK) cells. The addition of muFAP-CD40 to the combination treatment further increased infiltrating CD8+ T cells, expressing high levels of effector molecules, both in the periphery and core tumor regions. An accumulation of CD8+ PD-1+ TOX+ (exhausted) T cells, already at the 'early' timepoint, is consistent with the limited clinical benefits provided by the various combination treatments in this model. The study of the clonal dynamics of tumor cells during disease progression and therapy highlighted a clonal selection upon HRT+muPD1-IL2v therapy.
Conclusions: We demonstrated that HRT+muPD1-IL2v combination is a potent therapeutic strategy to delay tumor growth and increase survival in a metastatic lung cancer model, but additional studies are required to completely understand the resistance mechanisms associated with the lack of complete response in this model.
{"title":"PD-1 cis-targeted IL-2v in combination with radiotherapy inhibits lung cancer growth and remodels the immune microenvironment.","authors":"Céline Godfroid, Jackeline Romero, Sara Labiano, Chia-Hsien Chuang, Andrea Kelemen, Tania Wyss, Vincent Roh, Grégory Verdeil, Christian Klein, Laura Codarri Deak, Pablo Umaña, Genrich V Tolstonog, Christine Trumpfheller, Marie-Catherine Vozenin, Pedro J Romero","doi":"10.1136/jitc-2024-009832","DOIUrl":"https://doi.org/10.1136/jitc-2024-009832","url":null,"abstract":"<p><strong>Background: </strong>More efficient therapeutic options for non-small cell lung cancer (NSCLC) are needed as the survival at 5 years of metastatic disease is near zero. In this regard, we used a preclinical model of metastatic lung adenocarcinoma (SV2-OVA) to assess the safety and efficacy of novel radio-immunotherapy combining hypofractionated radiotherapy (HRT) with muPD1-IL2v immunocytokine and muFAP-CD40 bispecific antibody.</p><p><strong>Methods: </strong>We evaluated the changes in the lung immune microenvironment at multiple timepoints following combination therapies and investigated their underlying antitumor mechanisms. Additionally, we analyzed the tumor clonal heterogeneity upon the combination treatments to explore potential mechanisms associated with the lack of complete response.</p><p><strong>Results: </strong>The combination of HRT with muPD1-IL2v had a potent antitumor effect and increased survival in the SV2-OVA lung cancer model. Importantly, this combination therapy was devoid of measurable toxicity. It induced remodeling of the immune contexture through the increase of CD8<sup>+</sup> T and natural killer (NK) cells. The addition of muFAP-CD40 to the combination treatment further increased infiltrating CD8<sup>+</sup> T cells, expressing high levels of effector molecules, both in the periphery and core tumor regions. An accumulation of CD8<sup>+</sup> PD-1<sup>+</sup> TOX<sup>+</sup> (exhausted) T cells, already at the 'early' timepoint, is consistent with the limited clinical benefits provided by the various combination treatments in this model. The study of the clonal dynamics of tumor cells during disease progression and therapy highlighted a clonal selection upon HRT+muPD1-IL2v therapy.</p><p><strong>Conclusions: </strong>We demonstrated that HRT+muPD1-IL2v combination is a potent therapeutic strategy to delay tumor growth and increase survival in a metastatic lung cancer model, but additional studies are required to completely understand the resistance mechanisms associated with the lack of complete response in this model.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1136/jitc-2024-009544
Kun Wang, David O Osei-Hwedieh, Tara A Walhart, Yin P Hung, Yufeng Wang, Giulia Cattaneo, Tao Ma, Gianpietro Dotti, Xinhui Wang, Soldano Ferrone, Joseph H Schwab
Background: Chordoma is a slow-growing, primary malignant bone tumor that arises from notochordal tissue in the midline of the axial skeleton. Surgical excision with negative margins is the mainstay of treatment, but high local recurrence rates are reported even with negative margins. High-dose radiation therapy (RT), such as with proton or carbon ions, has been used as an alternative to surgery, but late local failure remains a problem. B7-H3 is an immune checkpoint, transmembrane protein that is dysregulated in many cancers, including chordoma. This study explores the efficacy of B7-H3 chimeric antigen receptor T (CAR-T) therapy in vitro and in vivo.
Methods: Chordoma cancer stem cells (CCSCs) were identified using flow cytometry, sphere formation, and western blot analysis. The expression of B7-H3 in paraffin-embedded chordoma tissue was determined by immunohistochemical staining, and the expression of B7-H3 in chordoma cells was measured by flow cytometry. Retroviral particles containing either B7-H3 or CD19 CAR-expressing virus were transduced into T cells derived from peripheral blood mononuclear cells isolated from healthy human donor blood to prepare CAR-T cells. Animal bioluminescent imaging was used to evaluate the killing effect of CAR-T cells on chordoma cells in vivo. An irradiator was used for all irradiation (IR) experiments.
Results: The combination of B7-H3 CAR-T cell therapy and IR has a greater killing effect on killing radiation-resistant CCSCs and bulk chordoma cells compared with CAR-T cell or IR monotherapy. Additionally, increased expression of B7-H3 antigens on CCSCs and bulk tumor cells is associated with enhanced CAR-T cell killing in vitro and in vivo xenograft mouse models. Upregulation of B7-H3 expression by IR increases CCSCs sensitivity to B7-H3 CAR-T cell-mediated killing.
Conclusions: Our preliminary data show that IR and B7-H3 CAR-T cell therapy is synergistically more effective than either IR or CAR-T cell monotherapy in killing chordoma cells in vitro and in a xenograft mouse model. These results provide preclinical evidence for further developing this combinatorial RT and B7-H3 CAR-T cell therapy model in chordoma.
{"title":"B7-H3 CAR-T cell therapy combined with irradiation is effective in targeting bulk and radiation-resistant chordoma cancer cells.","authors":"Kun Wang, David O Osei-Hwedieh, Tara A Walhart, Yin P Hung, Yufeng Wang, Giulia Cattaneo, Tao Ma, Gianpietro Dotti, Xinhui Wang, Soldano Ferrone, Joseph H Schwab","doi":"10.1136/jitc-2024-009544","DOIUrl":"https://doi.org/10.1136/jitc-2024-009544","url":null,"abstract":"<p><strong>Background: </strong>Chordoma is a slow-growing, primary malignant bone tumor that arises from notochordal tissue in the midline of the axial skeleton. Surgical excision with negative margins is the mainstay of treatment, but high local recurrence rates are reported even with negative margins. High-dose radiation therapy (RT), such as with proton or carbon ions, has been used as an alternative to surgery, but late local failure remains a problem. B7-H3 is an immune checkpoint, transmembrane protein that is dysregulated in many cancers, including chordoma. This study explores the efficacy of B7-H3 chimeric antigen receptor T (CAR-T) therapy in vitro and in vivo.</p><p><strong>Methods: </strong>Chordoma cancer stem cells (CCSCs) were identified using flow cytometry, sphere formation, and western blot analysis. The expression of B7-H3 in paraffin-embedded chordoma tissue was determined by immunohistochemical staining, and the expression of B7-H3 in chordoma cells was measured by flow cytometry. Retroviral particles containing either B7-H3 or CD19 CAR-expressing virus were transduced into T cells derived from peripheral blood mononuclear cells isolated from healthy human donor blood to prepare CAR-T cells. Animal bioluminescent imaging was used to evaluate the killing effect of CAR-T cells on chordoma cells in vivo. An irradiator was used for all irradiation (IR) experiments.</p><p><strong>Results: </strong>The combination of B7-H3 CAR-T cell therapy and IR has a greater killing effect on killing radiation-resistant CCSCs and bulk chordoma cells compared with CAR-T cell or IR monotherapy. Additionally, increased expression of B7-H3 antigens on CCSCs and bulk tumor cells is associated with enhanced CAR-T cell killing in vitro and in vivo xenograft mouse models. Upregulation of B7-H3 expression by IR increases CCSCs sensitivity to B7-H3 CAR-T cell-mediated killing.</p><p><strong>Conclusions: </strong>Our preliminary data show that IR and B7-H3 CAR-T cell therapy is synergistically more effective than either IR or CAR-T cell monotherapy in killing chordoma cells in vitro and in a xenograft mouse model. These results provide preclinical evidence for further developing this combinatorial RT and B7-H3 CAR-T cell therapy model in chordoma.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1136/jitc-2024-010386
Xiaofan Lu, Yann-Alexandre Vano, Xiaoping Su, Virginie Verkarre, Cheng-Ming Sun, Wenxuan Cheng, Li Xu, Fangrong Yan, Salma Kotti, Wolf Hervé Fridman, Catherine Sautes-Fridman, Stéphane Oudard, Gabriel G Malouf
Background: Endogenous retrovirus (ERV) elements are genomic footprints of ancestral retroviral infections within the human genome. While the dysregulation of ERV transcription has been linked to immune cell infiltration in various cancers, its relationship with immune checkpoint inhibitor (ICI) response in solid tumors, particularly metastatic clear-cell renal cell carcinoma (ccRCC), remains inadequately explored.
Methods: This study analyzed patients with metastatic ccRCC from two prospective clinical trials, encompassing 181 patients receiving nivolumab in the CheckMate trials (-009 to -010 and -025) and 48 patients treated with the ipilimumab-nivolumab combination in the BIONIKK trial. ERV expression was quantified using the ERVmap algorithm from RNA sequencing data. Our primary objective was to correlate ERV expression with progression-free survival, with overall survival and time-to-second-treatment survival as secondary endpoints. We used bootstrap methods with univariate Cox regression on 666 substantially expressed ERVs to evaluate their prognostic significance and stability.
Results: Our analysis centered on two ERVs, E4421_chr17 and E1659_chr4, which consistently exhibited opposing prognostic impacts across both cohorts. We developed a stratification system based on their median expression levels, categorizing patients into four ERV subgroups. These subgroups were further consolidated into a three-tier risk model that significantly correlated with ICI treatment outcomes. The most responsive ERV risk category showed enhanced endothelial cell infiltration, whereas the resistant category was characterized by higher levels of myeloid dendritic cells, regulatory T cells, myeloid-derived suppressor cells, and markers of T-cell exhaustion. Notably, this ERV-based classification outperformed traditional transcriptomic signatures in predicting ICI efficacy and showed further improvement when combined with epigenetic DNA methylation markers.
Conclusions: Our findings introduce a dual ERV-based stratification system that effectively categorizes patient risk and predicts clinical outcomes for ccRCC patients undergoing ICI therapy. Beyond enhancing the predictive precision of existing transcriptomic models, this system paves the way for more targeted and individualized approaches in the realm of precision oncology.
{"title":"Stratification system with dual human endogenous retroviruses for predicting immunotherapy efficacy in metastatic clear-cell renal cell carcinoma.","authors":"Xiaofan Lu, Yann-Alexandre Vano, Xiaoping Su, Virginie Verkarre, Cheng-Ming Sun, Wenxuan Cheng, Li Xu, Fangrong Yan, Salma Kotti, Wolf Hervé Fridman, Catherine Sautes-Fridman, Stéphane Oudard, Gabriel G Malouf","doi":"10.1136/jitc-2024-010386","DOIUrl":"https://doi.org/10.1136/jitc-2024-010386","url":null,"abstract":"<p><strong>Background: </strong>Endogenous retrovirus (ERV) elements are genomic footprints of ancestral retroviral infections within the human genome. While the dysregulation of ERV transcription has been linked to immune cell infiltration in various cancers, its relationship with immune checkpoint inhibitor (ICI) response in solid tumors, particularly metastatic clear-cell renal cell carcinoma (ccRCC), remains inadequately explored.</p><p><strong>Methods: </strong>This study analyzed patients with metastatic ccRCC from two prospective clinical trials, encompassing 181 patients receiving nivolumab in the CheckMate trials (-009 to -010 and -025) and 48 patients treated with the ipilimumab-nivolumab combination in the BIONIKK trial. ERV expression was quantified using the ERVmap algorithm from RNA sequencing data. Our primary objective was to correlate ERV expression with progression-free survival, with overall survival and time-to-second-treatment survival as secondary endpoints. We used bootstrap methods with univariate Cox regression on 666 substantially expressed ERVs to evaluate their prognostic significance and stability.</p><p><strong>Results: </strong>Our analysis centered on two ERVs, E4421_chr17 and E1659_chr4, which consistently exhibited opposing prognostic impacts across both cohorts. We developed a stratification system based on their median expression levels, categorizing patients into four ERV subgroups. These subgroups were further consolidated into a three-tier risk model that significantly correlated with ICI treatment outcomes. The most responsive ERV risk category showed enhanced endothelial cell infiltration, whereas the resistant category was characterized by higher levels of myeloid dendritic cells, regulatory T cells, myeloid-derived suppressor cells, and markers of T-cell exhaustion. Notably, this ERV-based classification outperformed traditional transcriptomic signatures in predicting ICI efficacy and showed further improvement when combined with epigenetic DNA methylation markers.</p><p><strong>Conclusions: </strong>Our findings introduce a dual ERV-based stratification system that effectively categorizes patient risk and predicts clinical outcomes for ccRCC patients undergoing ICI therapy. Beyond enhancing the predictive precision of existing transcriptomic models, this system paves the way for more targeted and individualized approaches in the realm of precision oncology.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20DOI: 10.1136/jitc-2024-010207
Simon Turcotte, Marco Donia, Brian Gastman, Michal Besser, Robert Brown, George Coukos, Benjamin Creelan, John Mullinax, Vernon K Sondak, James C Yang, Maartje W Rohaan, Inge Marie Svane, Michael T Lotze, John B A G Haanen, Stephanie L Goff
In a first for solid cancers, cellular immunotherapy has entered standard of care in the treatment of patients with metastatic melanoma. The infusion of autologous tumor-infiltrating T lymphocytes (TIL) is capable of mediating durable tumor regression and is now Food and Drug Administration-approved for patients with disease refractory to immune checkpoint inhibitors. Since the advent of chimeric antigen receptor (CAR) T cells for patients with hematological malignancies, a growing network of centers capable of delivering effector T cell products to patients has developed. Administration of TIL can be layered onto that institutional framework, but there are many complex and unique aspects to TIL immunotherapy. The highly multidisciplinary clinical expertise and coordination required to successfully and safely deliver TIL to patients began within the National Cancer Institute Surgery Branch and have been subsequently adopted worldwide. The general steps, most of which require hospital inpatient resources, include a surgical procedure to harvest sufficient tumor for TIL manufacturing, admission for non-myeloablative lymphodepleting chemotherapy followed by TIL, and intravenous interleukin-2 (IL-2, aldesleukin). Here, we provide the principles, practice, and required resources underlying the efficient and safe delivery of TIL immunotherapy derived from the clinical expertise of high-volume centers around the world. This article enhances published clinical practice guidelines by providing underlying clinical rationale and data-driven examples to demystify TIL immunotherapy in order to facilitate uptake and improve patient access to this promising treatment modality in clinical and research settings.
{"title":"Art of TIL immunotherapy: SITC's perspective on demystifying a complex treatment.","authors":"Simon Turcotte, Marco Donia, Brian Gastman, Michal Besser, Robert Brown, George Coukos, Benjamin Creelan, John Mullinax, Vernon K Sondak, James C Yang, Maartje W Rohaan, Inge Marie Svane, Michael T Lotze, John B A G Haanen, Stephanie L Goff","doi":"10.1136/jitc-2024-010207","DOIUrl":"10.1136/jitc-2024-010207","url":null,"abstract":"<p><p>In a first for solid cancers, cellular immunotherapy has entered standard of care in the treatment of patients with metastatic melanoma. The infusion of autologous tumor-infiltrating T lymphocytes (TIL) is capable of mediating durable tumor regression and is now Food and Drug Administration-approved for patients with disease refractory to immune checkpoint inhibitors. Since the advent of chimeric antigen receptor (CAR) T cells for patients with hematological malignancies, a growing network of centers capable of delivering effector T cell products to patients has developed. Administration of TIL can be layered onto that institutional framework, but there are many complex and unique aspects to TIL immunotherapy. The highly multidisciplinary clinical expertise and coordination required to successfully and safely deliver TIL to patients began within the National Cancer Institute Surgery Branch and have been subsequently adopted worldwide. The general steps, most of which require hospital inpatient resources, include a surgical procedure to harvest sufficient tumor for TIL manufacturing, admission for non-myeloablative lymphodepleting chemotherapy followed by TIL, and intravenous interleukin-2 (IL-2, aldesleukin). Here, we provide the principles, practice, and required resources underlying the efficient and safe delivery of TIL immunotherapy derived from the clinical expertise of high-volume centers around the world. This article enhances published clinical practice guidelines by providing underlying clinical rationale and data-driven examples to demystify TIL immunotherapy in order to facilitate uptake and improve patient access to this promising treatment modality in clinical and research settings.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-19DOI: 10.1136/jitc-2024-009734
Stephanie L Alden, Soren Charmsaz, Howard L Li, Hua-Ling Tsai, Ludmila Danilova, Kabeer Munjal, Madelena Brancati, Aanika Warner, Kathryn Howe, Ervin Griffin, Mari Nakazawa, Chris Thoburn, Jennifer Gizzi, Alexei Hernandez, Nicole E Gross, Erin M Coyne, Elsa Hallab, Sarah S Shin, Jennifer Durham, Evan J Lipson, Yasser Ged, Marina Baretti, Jean Hoffman-Censits, Tanguy Y Seiwert, Aditi Guha, Sanjay Bansal, Laura Tang, G Scott Chandler, Rajat Mohindra, Rachel Garonce-Hediger, Elizabeth M Jaffee, Won Jin Ho, Chester Kao, Mark Yarchoan
Background: Obesity is a risk factor for developing cancer but is also associated with improved outcomes after treatment with immune checkpoint inhibitors (ICIs), a phenomenon called the obesity paradox. To interrogate mechanisms of divergent immune responses in obese and non-obese patients, we examined the relationship among obesity status, clinical responses, and immune profiles from a diverse, pan-tumor cohort of patients treated with ICI-based therapy.
Methods: From June 2021 to March 2023, we prospectively collected serial peripheral blood samples from patients with advanced or metastatic solid tumors who received ICI as standard of care at Johns Hopkins. Patients were stratified by obesity status at treatment initiation, with obesity defined as body mass index (BMI)≥30 at treatment initiation and BMI≥18.5 and <30 considered non-obese; underweight patients (BMI<18.5) were excluded. We evaluated the concentration of 37 cytokines and used cytometry by time of flight to characterize immune cell clusters and cell-surface expression markers at baseline and on-treatment.
Results: We enrolled 94 patients, of whom 30 (32%) were obese and 64 (68%) were non-obese. Compared with non-obese patients, obese patients had superior progression-free survival (HR: 0.44 (95% CI: 0.24 to 0.81), p=0.01) and overall survival (OS) (HR: 0.24 (95% CI: 0.07 to 0.80), p=0.02). Obese patients had lower serum IL-15 levels at treatment baseline and lower on-treatment levels of IL-6, IL-8, and IL-15. Low on-treatment IL-6 was associated with improved OS (HR: 0.27 (95% CI: 0.08 to 0.88), p=0.03), as was low on-treatment IL-8 (HR: 0.19 (95% CI: 0.05 to 0.70), p=0.01). Obese patients demonstrated lower levels of T effector cells with reduced expression of cytotoxicity markers and higher expression of exhaustion markers at baseline and on-treatment.
Conclusions: Obese and non-obese patients with cancer have divergent immunological responses to ICIs. Obesity is associated with reduced levels of certain inhibitory cytokines and higher expression of T-cell exhaustion markers. ICI-based therapy may more effectively reverse T-cell dysfunction in obese patients, potentially contributing to the paradoxically improved responses in this population.
{"title":"Pan-tumor analysis to investigate the obesity paradox in immune checkpoint blockade.","authors":"Stephanie L Alden, Soren Charmsaz, Howard L Li, Hua-Ling Tsai, Ludmila Danilova, Kabeer Munjal, Madelena Brancati, Aanika Warner, Kathryn Howe, Ervin Griffin, Mari Nakazawa, Chris Thoburn, Jennifer Gizzi, Alexei Hernandez, Nicole E Gross, Erin M Coyne, Elsa Hallab, Sarah S Shin, Jennifer Durham, Evan J Lipson, Yasser Ged, Marina Baretti, Jean Hoffman-Censits, Tanguy Y Seiwert, Aditi Guha, Sanjay Bansal, Laura Tang, G Scott Chandler, Rajat Mohindra, Rachel Garonce-Hediger, Elizabeth M Jaffee, Won Jin Ho, Chester Kao, Mark Yarchoan","doi":"10.1136/jitc-2024-009734","DOIUrl":"10.1136/jitc-2024-009734","url":null,"abstract":"<p><strong>Background: </strong>Obesity is a risk factor for developing cancer but is also associated with improved outcomes after treatment with immune checkpoint inhibitors (ICIs), a phenomenon called the obesity paradox. To interrogate mechanisms of divergent immune responses in obese and non-obese patients, we examined the relationship among obesity status, clinical responses, and immune profiles from a diverse, pan-tumor cohort of patients treated with ICI-based therapy.</p><p><strong>Methods: </strong>From June 2021 to March 2023, we prospectively collected serial peripheral blood samples from patients with advanced or metastatic solid tumors who received ICI as standard of care at Johns Hopkins. Patients were stratified by obesity status at treatment initiation, with obesity defined as body mass index (BMI)≥30 at treatment initiation and BMI≥18.5 and <30 considered non-obese; underweight patients (BMI<18.5) were excluded. We evaluated the concentration of 37 cytokines and used cytometry by time of flight to characterize immune cell clusters and cell-surface expression markers at baseline and on-treatment.</p><p><strong>Results: </strong>We enrolled 94 patients, of whom 30 (32%) were obese and 64 (68%) were non-obese. Compared with non-obese patients, obese patients had superior progression-free survival (HR: 0.44 (95% CI: 0.24 to 0.81), p=0.01) and overall survival (OS) (HR: 0.24 (95% CI: 0.07 to 0.80), p=0.02). Obese patients had lower serum IL-15 levels at treatment baseline and lower on-treatment levels of IL-6, IL-8, and IL-15. Low on-treatment IL-6 was associated with improved OS (HR: 0.27 (95% CI: 0.08 to 0.88), p=0.03), as was low on-treatment IL-8 (HR: 0.19 (95% CI: 0.05 to 0.70), p=0.01). Obese patients demonstrated lower levels of T effector cells with reduced expression of cytotoxicity markers and higher expression of exhaustion markers at baseline and on-treatment.</p><p><strong>Conclusions: </strong>Obese and non-obese patients with cancer have divergent immunological responses to ICIs. Obesity is associated with reduced levels of certain inhibitory cytokines and higher expression of T-cell exhaustion markers. ICI-based therapy may more effectively reverse T-cell dysfunction in obese patients, potentially contributing to the paradoxically improved responses in this population.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1136/jitc-2024-010013
Blessie E Nelson, Shaun O'Brien, Rahul A Sheth, David S Hong, Aung Naing, Xiaoping Zhang, Amy Xu, Lora Hamuro, Rasika Suryawanshi, Derrick McKinley, Ruslan D Novosiadly, Sarina A Piha-Paul
Purpose: BMS-986299 is a first-in-class, NOD-, LRR-, and pyrin-domain containing-3 (NLRP3) inflammasome agonist enhancing adaptive immune and T-cell memory responses.
Materials and methods: This was a phase-I (NCT03444753) study that assessed the safety and tolerability of intra-tumoral BMS-986299 monotherapy (part 1A) and in combination (part 1B) with nivolumab, and ipilimumab in advanced solid tumors. Reported here are single-center results.
Results: 36 patients were enrolled, with breast (31%), colorectal (17%), and head and neck (14%) being the more commonly enrolled cancers. Most patients (58%) had received prior immunotherapy. Therapy was well-tolerated, with G1-G2 fever (70%), neutrophilia (36%), and leukocytosis (33%) being the most common treatment-related adverse events with one case of G4 interstitial nephritis and one case of G3 hepatotoxicity and G3 colitis. Intratumoral BMS-986299 monotherapy resulted in dose-dependent increases in systemic exposure with increase in tumor CTLs (67%), CD4+ TILs (63%), along with notable above twofold increases in serum IL-1B, G-CSF and IL-6 at doses above 2000 µg. Systemic BMS-986299 exposure was positively associated with systemic cytokine elevation for G-CSF and IL-6. No antitumor activity was noted in BMS-986299 monotherapy cohort. However, in the combination therapy cohort (BMS-986299+nivolumab+ipilimumab), overall objective response rate was 10%, with confirmed PRs observed in TNBC, hormone receptor-positive, human epidermal growth factor receptor 2 negative breast cancer, and cutaneous squamous cell carcinoma.
Conclusion: BMS-986299 in combination with immune checkpoint inhibitors demonstrated manageable toxicities, good tolerability, and promising antitumor activity in certain cancer types.
Trial registration number: NCT03444753.
目的:BMS-986299是一种一流的NOD-、LRR-和pyrin-domain containing-3 (NLRP3)炎性小体激动剂,可增强适应性免疫和t细胞记忆反应。材料和方法:这是一项i期(NCT03444753)研究,评估了肿瘤内BMS-986299单药治疗(1A部分)和联合nivolumab和ipilimumab治疗晚期实体瘤的安全性和耐受性。这里报告的是单中心结果。结果:36例患者入组,其中乳腺癌(31%)、结直肠癌(17%)和头颈部癌症(14%)是更常见的入组癌症。大多数患者(58%)之前接受过免疫治疗。治疗耐受良好,G1-G2发热(70%)、中性粒细胞增多(36%)和白细胞增多(33%)是最常见的治疗相关不良事件,其中1例为G4间质性肾炎,1例为G3肝毒性和G3结肠炎。瘤内BMS-986299单药治疗导致全身暴露量呈剂量依赖性增加,肿瘤ctl (67%), CD4+ TILs(63%)增加,血清IL-1B, g - csf和IL-6在剂量高于2000µg时显著增加两倍以上。全身BMS-986299暴露与全身细胞因子G-CSF和IL-6升高呈正相关。BMS-986299单药治疗组无抗肿瘤活性。然而,在联合治疗队列(BMS-986299+nivolumab+ipilimumab)中,总体客观缓解率为10%,在TNBC、激素受体阳性、人表皮生长因子受体2阴性乳腺癌和皮肤鳞状细胞癌中观察到证实的PRs。结论:BMS-986299联合免疫检查点抑制剂显示出可控的毒性,良好的耐受性,并且在某些癌症类型中具有良好的抗肿瘤活性。试验注册号:NCT03444753。
{"title":"Phase I study of BMS-986299, an NLRP3 agonist, as monotherapy and in combination with nivolumab and ipilimumab in patients with advanced solid tumors.","authors":"Blessie E Nelson, Shaun O'Brien, Rahul A Sheth, David S Hong, Aung Naing, Xiaoping Zhang, Amy Xu, Lora Hamuro, Rasika Suryawanshi, Derrick McKinley, Ruslan D Novosiadly, Sarina A Piha-Paul","doi":"10.1136/jitc-2024-010013","DOIUrl":"10.1136/jitc-2024-010013","url":null,"abstract":"<p><strong>Purpose: </strong>BMS-986299 is a first-in-class, NOD-, LRR-, and pyrin-domain containing-3 (NLRP3) inflammasome agonist enhancing adaptive immune and T-cell memory responses.</p><p><strong>Materials and methods: </strong>This was a phase-I (NCT03444753) study that assessed the safety and tolerability of intra-tumoral BMS-986299 monotherapy (part 1A) and in combination (part 1B) with nivolumab, and ipilimumab in advanced solid tumors. Reported here are single-center results.</p><p><strong>Results: </strong>36 patients were enrolled, with breast (31%), colorectal (17%), and head and neck (14%) being the more commonly enrolled cancers. Most patients (58%) had received prior immunotherapy. Therapy was well-tolerated, with G1-G2 fever (70%), neutrophilia (36%), and leukocytosis (33%) being the most common treatment-related adverse events with one case of G4 interstitial nephritis and one case of G3 hepatotoxicity and G3 colitis. Intratumoral BMS-986299 monotherapy resulted in dose-dependent increases in systemic exposure with increase in tumor CTLs (67%), CD4+ TILs (63%), along with notable above twofold increases in serum IL-1B, G-CSF and IL-6 at doses above 2000 µg. Systemic BMS-986299 exposure was positively associated with systemic cytokine elevation for G-CSF and IL-6. No antitumor activity was noted in BMS-986299 monotherapy cohort. However, in the combination therapy cohort (BMS-986299+nivolumab+ipilimumab), overall objective response rate was 10%, with confirmed PRs observed in TNBC, hormone receptor-positive, human epidermal growth factor receptor 2 negative breast cancer, and cutaneous squamous cell carcinoma.</p><p><strong>Conclusion: </strong>BMS-986299 in combination with immune checkpoint inhibitors demonstrated manageable toxicities, good tolerability, and promising antitumor activity in certain cancer types.</p><p><strong>Trial registration number: </strong>NCT03444753.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1136/jitc-2024-010035
Lixing Li, Xin Xu, Wentao Wang, Peiran Huang, Lei Yu, Zhenggang Ren, Jia Fan, Jian Zhou, Lan Zhang, Zheng Wang
Background: Numerous studies have demonstrated limited survival benefits of transarterial chemoembolization (TACE) alone in the treatment of intermediate-stage hepatocellular carcinoma (HCC) beyond up-to-seven criteria. The advent of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has opened new avenues for HCC treatment. However, TACE combined with ICIs has not been investigated for patients with intermediate-stage HCC beyond the up-to-seven criteria. The study aims to evaluate the efficacy and safety of this treatment strategy for such patients.
Methods: In this single-arm, prospective, phase II study, we enrolled eligible patients with HCC who were treated with TACE plus programmed cell death protein 1 (PD-1) inhibitors (sintilimab) from April 2021 to February 2023. The study's primary objectives were to assess progression-free survival (PFS) and safety. Secondary objectives included measuring the objective response rate (ORR) and disease control rate (DCR) as per both Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1 and modified RECIST (mRECIST) criteria, as well as overall survival (OS). Additionally, we conducted correlation analyses to identify predictors influencing the efficacy of tumor treatment.
Result: 20 patients participated in this study, with a median follow-up duration of 22.0 months. Median PFS was 8.4 months (95% CI: 4.7 to 19.7) according to both RECIST V.1.1 and mRECIST. The ORR was 30.0% (95% CI: 14.6% to 51.9%) per RECIST 1.1% and 60% (95% CI: 38.7% to 78.1%) per mRECIST. DCR was 95.0% (95% CI: 76.4% to 99.1%) according to both RECIST V.1.1 and mRECIST. Median OS was not yet reached. Notably, 20% (4/20) of patients underwent successful conversion to curative surgical resection. Treatment-related adverse events (TRAEs) mainly included elevated aspartate aminotransferase levels (19/20, 95.0%), elevated alanine aminotransferase levels (18/20, 90.0%), hypothyroidism (18/20, 90.0%), and reduced appetite (10/20, 50.0%). Among all participants, only one experienced grade 3 TRAE (myocarditis). We employed the Elastic Net regression model to analyze radiomic features from tumor and peritumoral areas to predict the efficacy of this treatment strategy.
Conclusion: TACE plus PD-1 inhibitors demonstrated promising efficacy and an acceptable safety profile, suggesting it as a potential treatment option for patients with intermediate-stage HCC beyond up-to-seven criteria. Furthermore, our study indicates that specific image-based features may serve as predictors for patients likely to benefit from this treatment approach.
{"title":"Safety and efficacy of PD-1 inhibitor (sintilimab) combined with transarterial chemoembolization as the initial treatment in patients with intermediate-stage hepatocellular carcinoma beyond up-to-seven criteria.","authors":"Lixing Li, Xin Xu, Wentao Wang, Peiran Huang, Lei Yu, Zhenggang Ren, Jia Fan, Jian Zhou, Lan Zhang, Zheng Wang","doi":"10.1136/jitc-2024-010035","DOIUrl":"10.1136/jitc-2024-010035","url":null,"abstract":"<p><strong>Background: </strong>Numerous studies have demonstrated limited survival benefits of transarterial chemoembolization (TACE) alone in the treatment of intermediate-stage hepatocellular carcinoma (HCC) beyond up-to-seven criteria. The advent of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has opened new avenues for HCC treatment. However, TACE combined with ICIs has not been investigated for patients with intermediate-stage HCC beyond the up-to-seven criteria. The study aims to evaluate the efficacy and safety of this treatment strategy for such patients.</p><p><strong>Methods: </strong>In this single-arm, prospective, phase II study, we enrolled eligible patients with HCC who were treated with TACE plus programmed cell death protein 1 (PD-1) inhibitors (sintilimab) from April 2021 to February 2023. The study's primary objectives were to assess progression-free survival (PFS) and safety. Secondary objectives included measuring the objective response rate (ORR) and disease control rate (DCR) as per both Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1 and modified RECIST (mRECIST) criteria, as well as overall survival (OS). Additionally, we conducted correlation analyses to identify predictors influencing the efficacy of tumor treatment.</p><p><strong>Result: </strong>20 patients participated in this study, with a median follow-up duration of 22.0 months. Median PFS was 8.4 months (95% CI: 4.7 to 19.7) according to both RECIST V.1.1 and mRECIST. The ORR was 30.0% (95% CI: 14.6% to 51.9%) per RECIST 1.1% and 60% (95% CI: 38.7% to 78.1%) per mRECIST. DCR was 95.0% (95% CI: 76.4% to 99.1%) according to both RECIST V.1.1 and mRECIST. Median OS was not yet reached. Notably, 20% (4/20) of patients underwent successful conversion to curative surgical resection. Treatment-related adverse events (TRAEs) mainly included elevated aspartate aminotransferase levels (19/20, 95.0%), elevated alanine aminotransferase levels (18/20, 90.0%), hypothyroidism (18/20, 90.0%), and reduced appetite (10/20, 50.0%). Among all participants, only one experienced grade 3 TRAE (myocarditis). We employed the Elastic Net regression model to analyze radiomic features from tumor and peritumoral areas to predict the efficacy of this treatment strategy.</p><p><strong>Conclusion: </strong>TACE plus PD-1 inhibitors demonstrated promising efficacy and an acceptable safety profile, suggesting it as a potential treatment option for patients with intermediate-stage HCC beyond up-to-seven criteria. Furthermore, our study indicates that specific image-based features may serve as predictors for patients likely to benefit from this treatment approach.</p><p><strong>Trial registration number: </strong>NCT04842565.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1136/jitc-2024-010579
Anton Lahusen, Nora Minhöfer, Kim-André Lohse, Christine Blechner, Jessica Lindenmayer, Tim Eiseler, Anton Wellstein, Alexander Kleger, Thomas Seufferlein, Sabine Windhorst, Yuan-Na Lin
Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.
Methods: We used an unbiased screening approach of T cell resistant and sensitive murine KPC (KrasLSL-G12D/+; Trp53fl/fl; Ptf1aCre/+ ) PDAC cells in a three-dimensional co-culture platform with syngeneic antigen-educated T cells to identify potential cell-intrinsic drivers of T cell suppression in PDAC. Comparative transcriptomic analysis was performed to reveal promising candidates that mediate resistance to T cells. We investigated their contribution by shRNA-mediated knockdown and pharmacological inhibition in murine in vitro and in vivo studies, as well as in patient-derived organoids (PDOs). A combination of transcriptomic analyses, cytometric and immunohistochemistry techniques allowed us to validate the underlying T cell response phenotypes of PDAC cells. The action of TGM2 via interaction with tubulin and the impact of microtubule dynamics and vesicle trafficking were evaluated by protein analyses and live-cell imaging. Correlation analyses via TCGA data complemented the functional studies.
Results: We identified transglutaminase 2 (TGM2) as a mediator of T cell suppression in PDAC. We report that high levels of TGM2 expression in patients' tumors correlate with immunosuppressive signatures and poor overall survival. We found that TGM2 regulates vesicle trafficking by modulating microtubule network density and dynamics in pancreatic cancer cells, thus facilitating the secretion of immunosuppressive cytokines, which impair effector T cell functionality. In TGM2-expressing PDOs, pharmacological TGM2 inhibition or treatment with nocodazole increased T cell-mediated apoptosis. Also, pretreatment of TGM2high PDOs with sublethal doses of the spindle poisons paclitaxel or vincristine increased CD8+T cell activation and sensitized PDOs toward T cell-mediated cytotoxicity.
Conclusions: These findings indicate that targeting microtubular function therapeutically may enhance antitumor T cell responses by impacting activity of immunosuppressive cytokines in the PDAC microenvironment.
{"title":"Pancreatic cancer cell-intrinsic transglutaminase-2 promotes T cell suppression through microtubule-dependent secretion of immunosuppressive cytokines.","authors":"Anton Lahusen, Nora Minhöfer, Kim-André Lohse, Christine Blechner, Jessica Lindenmayer, Tim Eiseler, Anton Wellstein, Alexander Kleger, Thomas Seufferlein, Sabine Windhorst, Yuan-Na Lin","doi":"10.1136/jitc-2024-010579","DOIUrl":"10.1136/jitc-2024-010579","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a \"cold\" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.</p><p><strong>Methods: </strong>We used an unbiased screening approach of T cell resistant and sensitive murine KPC (<i>Kras<sup>LSL-G12D/+</sup>; Trp53<sup>fl/fl</sup>; Ptf1a<sup>Cre/+</sup></i> ) PDAC cells in a three-dimensional co-culture platform with syngeneic antigen-educated T cells to identify potential cell-intrinsic drivers of T cell suppression in PDAC. Comparative transcriptomic analysis was performed to reveal promising candidates that mediate resistance to T cells. We investigated their contribution by shRNA-mediated knockdown and pharmacological inhibition in murine in vitro and in vivo studies, as well as in patient-derived organoids (PDOs). A combination of transcriptomic analyses, cytometric and immunohistochemistry techniques allowed us to validate the underlying T cell response phenotypes of PDAC cells. The action of TGM2 via interaction with tubulin and the impact of microtubule dynamics and vesicle trafficking were evaluated by protein analyses and live-cell imaging. Correlation analyses via TCGA data complemented the functional studies.</p><p><strong>Results: </strong>We identified transglutaminase 2 (TGM2) as a mediator of T cell suppression in PDAC. We report that high levels of TGM2 expression in patients' tumors correlate with immunosuppressive signatures and poor overall survival. We found that TGM2 regulates vesicle trafficking by modulating microtubule network density and dynamics in pancreatic cancer cells, thus facilitating the secretion of immunosuppressive cytokines, which impair effector T cell functionality. In TGM2-expressing PDOs, pharmacological TGM2 inhibition or treatment with nocodazole increased T cell-mediated apoptosis. Also, pretreatment of TGM2<sup>high</sup> PDOs with sublethal doses of the spindle poisons paclitaxel or vincristine increased CD8+T cell activation and sensitized PDOs toward T cell-mediated cytotoxicity.</p><p><strong>Conclusions: </strong>These findings indicate that targeting microtubular function therapeutically may enhance antitumor T cell responses by impacting activity of immunosuppressive cytokines in the PDAC microenvironment.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}