Vacuum Infiltration for Priming of Soybean Seeds: Optimization and Particle Tracking Using Fluorescent Silica Nanoparticles

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2025-03-18 DOI:10.1039/d4sc08566c
Tana O'Keefe, Beza Tuga, Chaoyi Deng, Sharmaka Mohamud, Rima Jamous, Mark Sanders, Wade H Elmer, Jason C. White, Christy Haynes
{"title":"Vacuum Infiltration for Priming of Soybean Seeds: Optimization and Particle Tracking Using Fluorescent Silica Nanoparticles","authors":"Tana O'Keefe, Beza Tuga, Chaoyi Deng, Sharmaka Mohamud, Rima Jamous, Mark Sanders, Wade H Elmer, Jason C. White, Christy Haynes","doi":"10.1039/d4sc08566c","DOIUrl":null,"url":null,"abstract":"Agrochemical delivery is highly inefficient, and novel application methods are necessary to promote crop health and yields while reducing environmental impact. In this work, a vacuum infiltration seed priming strategy was developed to incorporate silica nanoparticles into soybeans. Although successful in initial greenhouse and field studies, little is known about the amount of nutrient being delivered and the conditions for optimum accumulation. Herein, various infiltration conditions were evaluated using fluorescent silica nanoparticles and confocal microscopy, including nanoparticle surface charge and concentration, infiltration time, infiltrate ionic strength and pH, and seed presoaking. Negative nanoparticle surface charge, higher nanoparticle concentration, shorter infiltration time, and potassium-based salts resulted in greater nanoparticle infiltration. Seed coat elemental analysis complemented fluorescence data and highlight the co-delivery of beneficial macronutrients like potassium and magnesium under ionic salt infiltration conditions. Overall, these findings illustrate a new strategy to biofortify nanoscale nutrients into soybean seeds that can be expanded into other agrochemical targets and crop species to promote sustainable agriculture.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"183 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc08566c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Agrochemical delivery is highly inefficient, and novel application methods are necessary to promote crop health and yields while reducing environmental impact. In this work, a vacuum infiltration seed priming strategy was developed to incorporate silica nanoparticles into soybeans. Although successful in initial greenhouse and field studies, little is known about the amount of nutrient being delivered and the conditions for optimum accumulation. Herein, various infiltration conditions were evaluated using fluorescent silica nanoparticles and confocal microscopy, including nanoparticle surface charge and concentration, infiltration time, infiltrate ionic strength and pH, and seed presoaking. Negative nanoparticle surface charge, higher nanoparticle concentration, shorter infiltration time, and potassium-based salts resulted in greater nanoparticle infiltration. Seed coat elemental analysis complemented fluorescence data and highlight the co-delivery of beneficial macronutrients like potassium and magnesium under ionic salt infiltration conditions. Overall, these findings illustrate a new strategy to biofortify nanoscale nutrients into soybean seeds that can be expanded into other agrochemical targets and crop species to promote sustainable agriculture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Vacuum Infiltration for Priming of Soybean Seeds: Optimization and Particle Tracking Using Fluorescent Silica Nanoparticles Abiotic Formation of Hexoses and Disaccharides in Aqueous Microdroplets Real-time visualization of epileptic seizures using photoacoustic imaging with a peroxynitrite-responsive manganese(II) texaphyrin Mn-Rh Dual Single-Atom Catalyst for Inducing C−C Cleavage: Relay Catalysis Reversing Chemoselectivity in C-H Oxidation Dynamic Proton Coupled Electron Transfer Quenching as Sensing Modality in Fluorescent Probes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1