Yagmur Ceren Alatas, Uzay Tefek, Sayedus Salehin, Hashim Alhmoud, M. Selim Hanay
{"title":"Rapid Differentiation between Microplastic Particles Using Integrated Microwave Cytometry with 3D Electrodes","authors":"Yagmur Ceren Alatas, Uzay Tefek, Sayedus Salehin, Hashim Alhmoud, M. Selim Hanay","doi":"10.1021/acssensors.4c03268","DOIUrl":null,"url":null,"abstract":"Rapid identification of microparticles in liquid is an important problem in environmental and biomedical applications such as microplastic detection in water sources and physiological fluids. Existing spectroscopic techniques are usually slow and not compatible with flow-through systems. Here we analyze single microparticles in the 10–24 μm range using a combination of two electronic sensors in the same microfluidic system: a microwave capacitive sensor and a resistive pulse sensor. Together, this integrated sensor system yields an electrical signature of the analyte particles for their differentiation. To simplify data analysis, 3D electrode arrangements were used instead of planar electrodes so that the generated signal is unaffected by the height of the particle in the microfluidic channel. With this platform, we were able to distinguish between polystyrene (PS) and polyethylene (PE) microparticles. We showcase the sensitivity and speed of this technique and discuss the implications for the future application of microwave cytometry technology in the environmental and biomedical fields.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"16 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03268","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid identification of microparticles in liquid is an important problem in environmental and biomedical applications such as microplastic detection in water sources and physiological fluids. Existing spectroscopic techniques are usually slow and not compatible with flow-through systems. Here we analyze single microparticles in the 10–24 μm range using a combination of two electronic sensors in the same microfluidic system: a microwave capacitive sensor and a resistive pulse sensor. Together, this integrated sensor system yields an electrical signature of the analyte particles for their differentiation. To simplify data analysis, 3D electrode arrangements were used instead of planar electrodes so that the generated signal is unaffected by the height of the particle in the microfluidic channel. With this platform, we were able to distinguish between polystyrene (PS) and polyethylene (PE) microparticles. We showcase the sensitivity and speed of this technique and discuss the implications for the future application of microwave cytometry technology in the environmental and biomedical fields.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.