Multifunctional composite magnet realizing record-high transverse thermoelectric generation†

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2025-03-18 DOI:10.1039/D4EE04845H
Fuyuki Ando, Takamasa Hirai, Abdulkareem Alasli, Hossein Sepehri-Amin, Yutaka Iwasaki, Hosei Nagano and Ken-ichi Uchida
{"title":"Multifunctional composite magnet realizing record-high transverse thermoelectric generation†","authors":"Fuyuki Ando, Takamasa Hirai, Abdulkareem Alasli, Hossein Sepehri-Amin, Yutaka Iwasaki, Hosei Nagano and Ken-ichi Uchida","doi":"10.1039/D4EE04845H","DOIUrl":null,"url":null,"abstract":"<p >Permanent magnets are used in various products and essential for human society. If omnipresent permanent magnets could directly convert heat into electricity, they would lead to innovative energy harvesting and thermal management technologies. However, achieving such “multifunctionality” has been difficult due to poor thermoelectric performance of conventional magnets. In this work, we develop a multifunctional composite magnet (MCM) that enables giant transverse thermoelectric conversion while possessing permanent magnet features. MCM comprising alternately and obliquely stacked SmCo<small><sub>5</sub></small>/Bi<small><sub>0.2</sub></small>Sb<small><sub>1.8</sub></small>Te<small><sub>3</sub></small> multilayers exhibits an excellent transverse thermoelectric figure of merit <em>z</em><small><sub><em>xy</em></sub></small><em>T</em> of 0.20 at room temperature owing to the optimized anisotropic structure and extremely low interfacial electrical and thermal resistivities between the SmCo<small><sub>5</sub></small> and Bi<small><sub>0.2</sub></small>Sb<small><sub>1.8</sub></small>Te<small><sub>3</sub></small> layers. The MCM-based thermopile module generates a maximum of 204 mW at a temperature difference of 152 K, whose power density normalized by the heat transfer area and temperature gradient is not only record-high among transverse thermoelectric modules but also comparable to those of commercial thermoelectric modules utilizing the Seebeck effect. The multifunctionality of our MCM provides unprecedented opportunities for energy harvesting and thermal management everywhere permanent magnets are currently used.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 9","pages":" 4068-4079"},"PeriodicalIF":30.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ee/d4ee04845h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee04845h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Permanent magnets are used in various products and essential for human society. If omnipresent permanent magnets could directly convert heat into electricity, they would lead to innovative energy harvesting and thermal management technologies. However, achieving such “multifunctionality” has been difficult due to poor thermoelectric performance of conventional magnets. In this work, we develop a multifunctional composite magnet (MCM) that enables giant transverse thermoelectric conversion while possessing permanent magnet features. MCM comprising alternately and obliquely stacked SmCo5/Bi0.2Sb1.8Te3 multilayers exhibits an excellent transverse thermoelectric figure of merit zxyT of 0.20 at room temperature owing to the optimized anisotropic structure and extremely low interfacial electrical and thermal resistivities between the SmCo5 and Bi0.2Sb1.8Te3 layers. The MCM-based thermopile module generates a maximum of 204 mW at a temperature difference of 152 K, whose power density normalized by the heat transfer area and temperature gradient is not only record-high among transverse thermoelectric modules but also comparable to those of commercial thermoelectric modules utilizing the Seebeck effect. The multifunctionality of our MCM provides unprecedented opportunities for energy harvesting and thermal management everywhere permanent magnets are currently used.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多功能复合磁体实现创纪录的横向热电发电
永磁体应用于各种产品中,对人类社会至关重要。如果无所不在的永久磁铁可以直接将热量转化为电能,它们将带来创新的能量收集和热管理技术。然而,由于传统磁体热电性能差,实现这种“多功能性”一直很困难。在这项工作中,我们开发了一种多功能复合磁体(MCM),它可以在具有永磁体特征的同时实现巨大的横向热电转换。由SmCo5/Bi0.2Sb1.8Te3多层层交替和斜堆叠组成的MCM由于优化的各向异性结构和极低的界面电阻率和热电阻率,在室温下表现出优异的横向热电性能zxyT为0.20。基于mcm的热电堆模块在152 K的温差下产生的最大功率为204 mW,其功率密度经传热面积和温度梯度归一化后,不仅在横向热电模块中创历史新高,而且与利用塞贝克效应的商用热电模块相当。MCM的多功能为目前使用永磁体的任何地方的能量收集和热管理提供了前所未有的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Exploring a Scalable Route for Efficient Flexible Perovskite Solar Cells via Amphiphilic Cross-linkable Monomer Electron push–pull engineering enables sustainable, anti-corrosive, and nonflammable phosphate electrolytes for long-lifespan lithium–sulfur batteries Machine learning-accelerated discovery of multi-cation entropy-stabilized NASICON solid electrolytes with 10,000 hours of stable Na plating/stripping for all-solid-state sodium batteries Synchronizing Crystallization Enables Thermally Stable All-FA Pb-Sn Perovskites for Printable MA-Free All-Perovskite Tandem Solar Cells Hydrogen-bond-driven synergistic regulation of crystallization and interfacial coupling in 1.85 eV wide-bandgap perovskites for high-performance organic tandem solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1