Mesoscale polymer regulation for fast-charging solid-state lithium metal batteries†

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2025-03-18 DOI:10.1039/D5EE00203F
Yuetao Ma, Likun Chen, Yuhang Li, Boyu Li, Xufei An, Xing Cheng, Hai Su, Ke Yang, Guanyou Xiao, Yang Zhao, Zhuo Han, Shaoke Guo, Jinshuo Mi, Peiran Shi, Ming Liu, Yan-Bing He and Feiyu Kang
{"title":"Mesoscale polymer regulation for fast-charging solid-state lithium metal batteries†","authors":"Yuetao Ma, Likun Chen, Yuhang Li, Boyu Li, Xufei An, Xing Cheng, Hai Su, Ke Yang, Guanyou Xiao, Yang Zhao, Zhuo Han, Shaoke Guo, Jinshuo Mi, Peiran Shi, Ming Liu, Yan-Bing He and Feiyu Kang","doi":"10.1039/D5EE00203F","DOIUrl":null,"url":null,"abstract":"<p >Developing solid-state polymer electrolytes with both high voltage and ionic conductivity is essential for practical solid-state batteries. Poly(vinylidene fluoride) (PVDF)-based solid-state electrolytes are attractive for solid-state lithium metal batteries (LMBs). However, their high mesoscale heterogeneity induced by phase separation during electrolyte preparation leads to the formation of large PVDF spherulites. Herein, we demonstrate that the mesoscale heterogeneity causes the accumulation of Li<small><sup>+</sup></small> on the surfaces of oversized PVDF spherulites. The large spherulites with low interface-bulk ratios greatly impede the efficient long-range Li<small><sup>+</sup></small> conduction within the electrolyte. We propose an efficient strategy to regulate the geometric structure of PVDF spherulites by introducing the polyvinyl alcohol (PVA) coated dielectric SrTiO<small><sub>3</sub></small> (PVA@STO) as a nucleating agent in a PVDF-based electrolyte. The excellent interfacial compatibility of the PVA coating layer with PVDF facilitates the uniform dispersion of PVA@STO nano-fillers and regulates the nucleation to form abundant finer PVDF spherulites with more interfaces, thereby providing abundant Li<small><sup>+</sup></small> transport pathways. Furthermore, the well-dispersed PVA@STO nano-fillers can effectively dissociate lithium salt to generate more mobile Li<small><sup>+</sup></small> in the PVDF–PVA@STO electrolyte that exhibits a high ionic conductivity of 8.6 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small>. The Li|PVDF–PVA@STO|NCM811 batteries demonstrate excellent high rate cycling performance, retaining 80.8% and 70.5% capacity after 2000 cycles at 5C and 10C, respectively. This work clearly demonstrates the significant effect of mesoscale structure regulation on a polymer structure for high-performance fast-charging solid-state lithium metal batteries.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 8","pages":" 3730-3739"},"PeriodicalIF":30.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee00203f","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing solid-state polymer electrolytes with both high voltage and ionic conductivity is essential for practical solid-state batteries. Poly(vinylidene fluoride) (PVDF)-based solid-state electrolytes are attractive for solid-state lithium metal batteries (LMBs). However, their high mesoscale heterogeneity induced by phase separation during electrolyte preparation leads to the formation of large PVDF spherulites. Herein, we demonstrate that the mesoscale heterogeneity causes the accumulation of Li+ on the surfaces of oversized PVDF spherulites. The large spherulites with low interface-bulk ratios greatly impede the efficient long-range Li+ conduction within the electrolyte. We propose an efficient strategy to regulate the geometric structure of PVDF spherulites by introducing the polyvinyl alcohol (PVA) coated dielectric SrTiO3 (PVA@STO) as a nucleating agent in a PVDF-based electrolyte. The excellent interfacial compatibility of the PVA coating layer with PVDF facilitates the uniform dispersion of PVA@STO nano-fillers and regulates the nucleation to form abundant finer PVDF spherulites with more interfaces, thereby providing abundant Li+ transport pathways. Furthermore, the well-dispersed PVA@STO nano-fillers can effectively dissociate lithium salt to generate more mobile Li+ in the PVDF–PVA@STO electrolyte that exhibits a high ionic conductivity of 8.6 × 10−4 S cm−1. The Li|PVDF–PVA@STO|NCM811 batteries demonstrate excellent high rate cycling performance, retaining 80.8% and 70.5% capacity after 2000 cycles at 5C and 10C, respectively. This work clearly demonstrates the significant effect of mesoscale structure regulation on a polymer structure for high-performance fast-charging solid-state lithium metal batteries.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速充电固态锂金属电池的中尺度聚合物调节
开发具有高电压和离子导电性的固态聚合物电解质是实用固态电池的必要条件。聚偏氟乙烯(PVDF)基固态电解质对固态锂金属电池(lmb)具有吸引力。然而,在电解质制备过程中,由于相分离引起的高度中尺度非均质性导致了PVDF大球粒的形成。本文证明了中尺度非均质性导致了超大PVDF球晶表面Li+的积累。界面体积比低的大球晶极大地阻碍了锂离子在电解质内的高效远程传导。我们提出了一种有效的策略,通过在PVDF基电解质中引入聚乙烯醇(PVA)涂层的电介质SrTiO3 (PVA@STO)作为成核剂来调节PVDF球粒的几何结构。PVA涂层与PVDF良好的界面相容性,有利于PVA@STO纳米填料的均匀分散,调控成核形成丰富的更细的PVDF球晶和更多的界面,从而提供丰富的Li+输运途径。此外,分散良好的PVA@STO纳米填料可以有效地解离锂盐,在PVDF - PVA@STO电解质中产生更多的移动Li+,其离子电导率高达8.6 × 10−4 S cm−1。Li|PVDF - PVA@STO|NCM811电池表现出优异的高倍率循环性能,在5C和10C下循环2000次后容量分别保持80.8%和70.5%。这项工作清楚地证明了中尺度结构调节对高性能快速充电固态锂金属电池聚合物结构的重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Exploring a Scalable Route for Efficient Flexible Perovskite Solar Cells via Amphiphilic Cross-linkable Monomer Electron push–pull engineering enables sustainable, anti-corrosive, and nonflammable phosphate electrolytes for long-lifespan lithium–sulfur batteries Machine learning-accelerated discovery of multi-cation entropy-stabilized NASICON solid electrolytes with 10,000 hours of stable Na plating/stripping for all-solid-state sodium batteries Synchronizing Crystallization Enables Thermally Stable All-FA Pb-Sn Perovskites for Printable MA-Free All-Perovskite Tandem Solar Cells Hydrogen-bond-driven synergistic regulation of crystallization and interfacial coupling in 1.85 eV wide-bandgap perovskites for high-performance organic tandem solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1