Enhancing the application of near-infrared spectroscopy in grain mycotoxin detection: An exploration of a transfer learning approach across contaminants and grains

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry Pub Date : 2025-03-17 DOI:10.1016/j.foodchem.2025.143854
Jihong Deng, Congli Mei, Hui Jiang
{"title":"Enhancing the application of near-infrared spectroscopy in grain mycotoxin detection: An exploration of a transfer learning approach across contaminants and grains","authors":"Jihong Deng, Congli Mei, Hui Jiang","doi":"10.1016/j.foodchem.2025.143854","DOIUrl":null,"url":null,"abstract":"Cereals are a primary source of sustenance for humanity. Monitoring, controlling, and preventing mycotoxins in cereals are vital for ensuring the safety of the cereals and their derived products. This study introduces transfer learning strategies into chemometrics to improve deep learning models applied to spectral data from different grains or toxins. Three transfer learning methods were explored for their potential to quantitatively detect fungal toxins in cereals. The feasibility of transfer learning was demonstrated by predicting wheat zearalenone (ZEN) and peanut aflatoxin B1 (AFB1) sample sets on different instruments. The results indicated that the second transfer method is effective in detecting toxins. For FT-NIR spectrometry, the transfer model achieved an R<sup>2</sup> of 0.9356, a relative prediction deviation (RPD) of 3.9497 for wheat ZEN prediction, and an R<sup>2</sup> of 0.9419 with an RPD of 4.1551 for peanut AFB1 detection. With NIR spectrometry, effective peanut AFB1 detection was also achieved, yielding an R<sup>2</sup> of 0.9386 and an RPD of 4.0434 in the prediction set. These results suggest that the proposed transfer learning approach can successfully update a source domain model into one that is suitable for tasks in the target domain. This study provides a viable solution to the problem of poor adaptability of single-source models, presenting a more universally applicable method for spectral detection of fungal toxins in cereals.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"52 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143854","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cereals are a primary source of sustenance for humanity. Monitoring, controlling, and preventing mycotoxins in cereals are vital for ensuring the safety of the cereals and their derived products. This study introduces transfer learning strategies into chemometrics to improve deep learning models applied to spectral data from different grains or toxins. Three transfer learning methods were explored for their potential to quantitatively detect fungal toxins in cereals. The feasibility of transfer learning was demonstrated by predicting wheat zearalenone (ZEN) and peanut aflatoxin B1 (AFB1) sample sets on different instruments. The results indicated that the second transfer method is effective in detecting toxins. For FT-NIR spectrometry, the transfer model achieved an R2 of 0.9356, a relative prediction deviation (RPD) of 3.9497 for wheat ZEN prediction, and an R2 of 0.9419 with an RPD of 4.1551 for peanut AFB1 detection. With NIR spectrometry, effective peanut AFB1 detection was also achieved, yielding an R2 of 0.9386 and an RPD of 4.0434 in the prediction set. These results suggest that the proposed transfer learning approach can successfully update a source domain model into one that is suitable for tasks in the target domain. This study provides a viable solution to the problem of poor adaptability of single-source models, presenting a more universally applicable method for spectral detection of fungal toxins in cereals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
期刊最新文献
Metal-organic framework incorporated fungal mycelium membrane for synergistic mycotoxin degradation via adsorption, oxidation, and photocatalysis Metabolome insights into nutrients and glucosinolates in broccoli and lacinato kale 1H NMR spectra modeling for predicting the acid, saponification, and iodine values of bio-waxes derived from vegetable oils Effects of dry and wet ball milling on physicochemical properties of foxtail millet Unveiling the multiscale structural dynamics and retrogradation behavior of potato starch via integrated enzymatic hydrolysis enhanced by microwave
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1