Influence of oxygen orbitals and boundary conditions on the pairing behavior in the Emery model for doped ladders

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2025-03-17 DOI:10.1103/physrevb.111.125137
Gökmen Polat, Eric Jeckelmann
{"title":"Influence of oxygen orbitals and boundary conditions on the pairing behavior in the Emery model for doped ladders","authors":"Gökmen Polat, Eric Jeckelmann","doi":"10.1103/physrevb.111.125137","DOIUrl":null,"url":null,"abstract":"We investigate the Emery model on several ladder-like lattices including two legs of copper d</a:mi></a:math> orbitals and various numbers of oxygen <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mi>p</b:mi></b:math> orbitals. Pair binding energy, pair spatial structure, density distribution, and pairing correlation functions are calculated using the density-matrix renormalization group (DMRG). We show that a Luther-Emery phase with enhanced pairing correlations can be found for hole doping as well as for electron doping with realistic model parameters. Ladder properties depend sensitively on model parameters, the oxygen <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mi>p</c:mi></c:math> orbitals taken into account, and boundary conditions. The pair binding energy is a more reliable quantity than correlation functions for ascertaining the occurrence of pairing in ladders. Overall, our results for two-leg Emery ladders support the possibility of superconductivity in the hole-doped 2D model. The issue is rather to determine which of the various ladder structures and model parameters are appropriate to approximate the two-dimensional cuprates. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"34 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.125137","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the Emery model on several ladder-like lattices including two legs of copper d orbitals and various numbers of oxygen p orbitals. Pair binding energy, pair spatial structure, density distribution, and pairing correlation functions are calculated using the density-matrix renormalization group (DMRG). We show that a Luther-Emery phase with enhanced pairing correlations can be found for hole doping as well as for electron doping with realistic model parameters. Ladder properties depend sensitively on model parameters, the oxygen p orbitals taken into account, and boundary conditions. The pair binding energy is a more reliable quantity than correlation functions for ascertaining the occurrence of pairing in ladders. Overall, our results for two-leg Emery ladders support the possibility of superconductivity in the hole-doped 2D model. The issue is rather to determine which of the various ladder structures and model parameters are appropriate to approximate the two-dimensional cuprates. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧轨道和边界条件对掺杂阶梯的Emery模型中配对行为的影响
我们研究了几种阶梯状晶格上的金刚砂模型,包括铜的两条腿d轨道和不同数量的氧p轨道。利用密度矩阵重整化群(DMRG)计算了配对结合能、配对空间结构、密度分布和配对相关函数。我们表明,对于空穴掺杂和具有现实模型参数的电子掺杂,可以发现具有增强的配对相关性的路德-金刚砂相。阶梯性质敏感地依赖于模型参数、考虑到的氧p轨道和边界条件。对结合能是一个比相关函数更可靠的确定阶梯中是否存在配对的量。总的来说,我们的两条腿金刚砂梯的结果支持了在空穴掺杂的二维模型中超导的可能性。问题是确定各种阶梯结构和模型参数中哪一个适合近似二维铜曲面。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Asymmetric real topology of conduction and valence bands Large ferromagnetic-like band splitting in ultrathin SmC6 films Negative-energy spin waves in antiferromagnets for spin-current amplification and analogue gravity Topological and fractal defect states in non-Hermitian lattices ϕ0 junction and Josephson diode effect in high-temperature superconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1