Real-space imaging of photo-generated surface carrier transport in 2D perovskites

IF 23.4 Q1 OPTICS Light-Science & Applications Pub Date : 2025-03-18 DOI:10.1038/s41377-025-01758-5
Lijie Wang, Wentao Wu, Jie Yang, Razan Nughays, Yifan Zhou, Esma Ugur, Xi Zhang, Bingyao Shao, Jian-Xin Wang, Jun Yin, Stefaan De Wolf, Osman M. Bakr, Omar F. Mohammed
{"title":"Real-space imaging of photo-generated surface carrier transport in 2D perovskites","authors":"Lijie Wang, Wentao Wu, Jie Yang, Razan Nughays, Yifan Zhou, Esma Ugur, Xi Zhang, Bingyao Shao, Jian-Xin Wang, Jun Yin, Stefaan De Wolf, Osman M. Bakr, Omar F. Mohammed","doi":"10.1038/s41377-025-01758-5","DOIUrl":null,"url":null,"abstract":"<p>In layered two-dimensional (2D) perovskites, the inorganic perovskite layers sandwiched between cation spacers create quantum well (QW) structures, showing large exciton binding energies that hinder the efficient dissociation of excitons into free carriers. This leads to poor carrier transport properties and low-performance light-conversion-based devices, and the direct understanding of the underlying physics, particularly concerning surface states, remains extremely difficult, if not impossible, due to the challenges in real-time accessibility. Here, we utilized four-dimensional scanning ultrafast electron microscopy (4D-SUEM), a highly sensitive technique for mapping surface carrier diffusion that diverges from those in the bulk and substantially affects material properties. We directly visualize photo-generated carrier transport over both spatial and temporal dimensions on the top surface of 2D perovskites with varying inorganic perovskite layer thicknesses (<i>n</i> = 1, 2, and 3). The results reveal the photo-induced surface carrier diffusion rates of ~30 cm<sup>2</sup>·s<sup>-1</sup> for <i>n</i> = 1, ~180 cm<sup>2</sup>·s<sup>-1</sup> for <i>n</i> = 2, and ~470 cm<sup>2</sup>·s<sup>-1</sup> for <i>n</i> = 3, which are over 20 times larger than bulk. This is because charge carrier transmission channels have much wider distributions on the top surface compared to the bulk, as supported by the Density Functional Theory (DFT) calculations. Finally, our findings represent the demonstration to directly correlate the discrepancies between surface and bulk carrier diffusion behaviors, their relationship with exciton binding energy, and the number of layers in 2D perovskites, providing valuable insights into enhancing the performance of 2D perovskite-based optoelectronic devices through interface engineering.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"21 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01758-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In layered two-dimensional (2D) perovskites, the inorganic perovskite layers sandwiched between cation spacers create quantum well (QW) structures, showing large exciton binding energies that hinder the efficient dissociation of excitons into free carriers. This leads to poor carrier transport properties and low-performance light-conversion-based devices, and the direct understanding of the underlying physics, particularly concerning surface states, remains extremely difficult, if not impossible, due to the challenges in real-time accessibility. Here, we utilized four-dimensional scanning ultrafast electron microscopy (4D-SUEM), a highly sensitive technique for mapping surface carrier diffusion that diverges from those in the bulk and substantially affects material properties. We directly visualize photo-generated carrier transport over both spatial and temporal dimensions on the top surface of 2D perovskites with varying inorganic perovskite layer thicknesses (n = 1, 2, and 3). The results reveal the photo-induced surface carrier diffusion rates of ~30 cm2·s-1 for n = 1, ~180 cm2·s-1 for n = 2, and ~470 cm2·s-1 for n = 3, which are over 20 times larger than bulk. This is because charge carrier transmission channels have much wider distributions on the top surface compared to the bulk, as supported by the Density Functional Theory (DFT) calculations. Finally, our findings represent the demonstration to directly correlate the discrepancies between surface and bulk carrier diffusion behaviors, their relationship with exciton binding energy, and the number of layers in 2D perovskites, providing valuable insights into enhancing the performance of 2D perovskite-based optoelectronic devices through interface engineering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维钙钛矿中光生成表面载流子输运的实空间成像
在层状二维(2D)钙钛矿中,夹在阳离子间隔层之间的无机钙钛矿层形成量子阱(QW)结构,显示出大的激子结合能,阻碍激子有效解离成自由载流子。这导致载流子输运性能差,基于光转换的器件性能低,并且由于实时可及性的挑战,直接理解底层物理,特别是表面状态,仍然非常困难,如果不是不可能的话。在这里,我们使用了四维扫描超快电子显微镜(4D-SUEM),这是一种高灵敏度的技术,用于绘制表面载流子扩散,这种扩散与体中的扩散不同,并实质上影响材料性能。在不同无机钙钛矿层厚度(n = 1、2和3)的二维钙钛矿顶表面,我们直接可视化了光产生的载流子在空间和时间上的输运。结果表明,当n = 1时,光诱导的表面载流子扩散速率为~30 cm2·s-1,当n = 2时为~180 cm2·s-1,当n = 3时为~470 cm2·s-1,比体积大20倍以上。这是因为与体相比,载流子传输通道在顶表面的分布要宽得多,这一点得到了密度泛函理论(DFT)计算的支持。最后,我们的研究结果证明了表面和散体载流子扩散行为之间的差异、它们与激子结合能的关系以及二维钙钛矿中的层数之间的直接关联,为通过界面工程提高二维钙钛矿基光电器件的性能提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
The plasmonic BTO-on-SiN platform - beyond 200 GBd modulation for optical communications. V-band ultra-fast tunable thin-film lithium niobate Fourier-domain mode-locked optoelectronic oscillator Whispering-gallery-mode resonators for detection and classification of free-flowing nanoparticles and cells through photoacoustic signatures Advancements in transfer printing techniques and their applications in photonic integrated circuits Topology-driven energy transfer networks for upconversion stimulated emission depletion microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1