Sai Gao, Yu Zhao, Lulu Zhang, Xiaoning Li, Haoda Chen, Jing Qi, Chengzhi Hu
{"title":"Environmental Gradient Changes Shape Multi-Scale Food Web Structures: Impact on Antibiotics Trophic Transfer in a Lake Ecosystem","authors":"Sai Gao, Yu Zhao, Lulu Zhang, Xiaoning Li, Haoda Chen, Jing Qi, Chengzhi Hu","doi":"10.1016/j.jhazmat.2025.137965","DOIUrl":null,"url":null,"abstract":"Environmental change can alter the multi-scale foodweb structure, thereby impacting the pollutants trophic transfer in aquatic ecosystems. However, a quantitative understanding of how environmental gradient changes affect pollutant trophic transfer in natural lake ecosystems remains limited. This study investigated temporal variations in environment change index (ECi), multi-scale foodweb structure, and trophic transfer of quinolones antibiotics (QNs) in Baiyangdian Lake, Northern China, from 2018 to 2023. Our results demonstrated that the interaction strength (IS) in detritus (DIS) and macrophyte (MIS) in 2023 were significantly lower than those in 2018, and diversity indices exhibited significant temporal differences between 2018 and 2023. ECi was significantly correlated with DIS/MIS between species at the population scale and with diversity indices (D<sub>H</sub> and H’) at the ecosystem scale. The trophic magnification factors (TMFs) of QNs have higher values in 2023 compared to 2018, showing significant temporal differences. Through structural equation model, the results showed ECi directly impacted DIS, which in turn affected SEAc and H’, while indirectly influencing TMFs. The TMFs of QNs was mainly regulated by environmental factors. These findings highlighted the influencing mechanism through multi-scale foodweb structures regulate pollutant trophic transfer under environmental change in natural lake.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"866 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137965","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental change can alter the multi-scale foodweb structure, thereby impacting the pollutants trophic transfer in aquatic ecosystems. However, a quantitative understanding of how environmental gradient changes affect pollutant trophic transfer in natural lake ecosystems remains limited. This study investigated temporal variations in environment change index (ECi), multi-scale foodweb structure, and trophic transfer of quinolones antibiotics (QNs) in Baiyangdian Lake, Northern China, from 2018 to 2023. Our results demonstrated that the interaction strength (IS) in detritus (DIS) and macrophyte (MIS) in 2023 were significantly lower than those in 2018, and diversity indices exhibited significant temporal differences between 2018 and 2023. ECi was significantly correlated with DIS/MIS between species at the population scale and with diversity indices (DH and H’) at the ecosystem scale. The trophic magnification factors (TMFs) of QNs have higher values in 2023 compared to 2018, showing significant temporal differences. Through structural equation model, the results showed ECi directly impacted DIS, which in turn affected SEAc and H’, while indirectly influencing TMFs. The TMFs of QNs was mainly regulated by environmental factors. These findings highlighted the influencing mechanism through multi-scale foodweb structures regulate pollutant trophic transfer under environmental change in natural lake.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.