Arthur Josi, Mahdi Alehdaghi, Rafael M. O. Cruz, Eric Granger
{"title":"Fusion for Visual-Infrared Person ReID in Real-World Surveillance Using Corrupted Multimodal Data","authors":"Arthur Josi, Mahdi Alehdaghi, Rafael M. O. Cruz, Eric Granger","doi":"10.1007/s11263-025-02396-5","DOIUrl":null,"url":null,"abstract":"<p>Visible-infrared person re-identification (V-I ReID) seeks to match images of individuals captured over a distributed network of RGB and IR cameras. The task is challenging due to the significant differences between V and I modalities, especially under real-world conditions, where images face corruptions such as blur, noise, and weather. Despite their practical relevance, deep learning models for multimodal V-I ReID remain far less investigated than for single and cross-modal V to I settings. Moreover, state-of-art V-I ReID models cannot leverage corrupted modality information to sustain a high level of accuracy. In this paper, we propose an efficient model for multimodal V-I ReID – named Multimodal Middle Stream Fusion (MMSF) – that preserves modality-specific knowledge for improved robustness to corrupted multimodal images. In addition, three state-of-art attention-based multimodal fusion models are adapted to address corrupted multimodal data in V-I ReID, allowing for dynamic balancing of the importance of each modality. The literature typically reports ReID performance using clean datasets, but more recently, evaluation protocols have been proposed to assess the robustness of ReID models under challenging real-world scenarios, using data with realistic corruptions. However, these protocols are limited to unimodal V settings. For realistic evaluation of multimodal (and cross-modal) V-I person ReID models, we propose new challenging corrupted datasets for scenarios where V and I cameras are co-located (CL) and not co-located (NCL). Finally, the benefits of our Masking and Local Multimodal Data Augmentation (ML-MDA) strategy are explored to improve the robustness of ReID models to multimodal corruption. Our experiments on clean and corrupted versions of the SYSU-MM01, RegDB, and ThermalWORLD datasets indicate the multimodal V-I ReID models that are more likely to perform well in real-world operational conditions. In particular, the proposed ML-MDA is shown as essential for a V-I person ReID system to sustain high accuracy and robustness in face of corrupted multimodal images. Our multimodal ReID models attains the best accuracy and complexity trade-off under both CL and NCL settings and compared to state-of-art unimodal ReID systems, except for the ThermalWORLD dataset due to its low-quality I. Our MMSF model outperforms every method under CL and NCL camera scenarios. GitHub code: https://github.com/art2611/MREiD-UCD-CCD.git.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"183 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02396-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Visible-infrared person re-identification (V-I ReID) seeks to match images of individuals captured over a distributed network of RGB and IR cameras. The task is challenging due to the significant differences between V and I modalities, especially under real-world conditions, where images face corruptions such as blur, noise, and weather. Despite their practical relevance, deep learning models for multimodal V-I ReID remain far less investigated than for single and cross-modal V to I settings. Moreover, state-of-art V-I ReID models cannot leverage corrupted modality information to sustain a high level of accuracy. In this paper, we propose an efficient model for multimodal V-I ReID – named Multimodal Middle Stream Fusion (MMSF) – that preserves modality-specific knowledge for improved robustness to corrupted multimodal images. In addition, three state-of-art attention-based multimodal fusion models are adapted to address corrupted multimodal data in V-I ReID, allowing for dynamic balancing of the importance of each modality. The literature typically reports ReID performance using clean datasets, but more recently, evaluation protocols have been proposed to assess the robustness of ReID models under challenging real-world scenarios, using data with realistic corruptions. However, these protocols are limited to unimodal V settings. For realistic evaluation of multimodal (and cross-modal) V-I person ReID models, we propose new challenging corrupted datasets for scenarios where V and I cameras are co-located (CL) and not co-located (NCL). Finally, the benefits of our Masking and Local Multimodal Data Augmentation (ML-MDA) strategy are explored to improve the robustness of ReID models to multimodal corruption. Our experiments on clean and corrupted versions of the SYSU-MM01, RegDB, and ThermalWORLD datasets indicate the multimodal V-I ReID models that are more likely to perform well in real-world operational conditions. In particular, the proposed ML-MDA is shown as essential for a V-I person ReID system to sustain high accuracy and robustness in face of corrupted multimodal images. Our multimodal ReID models attains the best accuracy and complexity trade-off under both CL and NCL settings and compared to state-of-art unimodal ReID systems, except for the ThermalWORLD dataset due to its low-quality I. Our MMSF model outperforms every method under CL and NCL camera scenarios. GitHub code: https://github.com/art2611/MREiD-UCD-CCD.git.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.