{"title":"Origin–destination prediction via knowledge-enhanced hybrid learning","authors":"Zeren Xing, Edward Chung, Yiyang Wang, Azusa Toriumi, Takashi Oguchi, Yuehui Wu","doi":"10.1111/mice.13458","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel origin–destination (OD) prediction (ODP) model, namely, knowledge-enhanced hybrid spatial–temporal graph neural networks (KE-H-GNN). KE-H-GNN integrates a deep learning predictive model with traffic engineering domain knowledge and a multi-linear regression (MLR) module for incorporating external factors. Leveraging insights from the gravity model, we propose two meaningful region partitioning strategies for reducing data dimension: election districts and K-means clustering. The aggregated OD matrices and graph inputs are processed using an long short-term memory network to capture temporal correlations and a multi-graph input graph convolutional network module to capture spatial correlations. The model also employs a global–local attention module, inspired by traffic flow theory, to capture nonlinear spatial features. Finally, an MLR module was designed to quantify the relationship between OD matrices and external factors. Experiments on real-world datasets from New York and Tokyo demonstrate that KE-H-GNN outperforms all the baseline models while maintaining interpretability. Additionally, the MLR module outperformed the concatenation method for integrating external factors, regarding both performance and transparency. Moreover, the election district-based partitioning approach proved more effective and simpler for practical applications. The proposed KE-H-GNN offers an effective and interpretable solution for ODP that can be practically applied in real-world scenarios.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"125 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13458","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel origin–destination (OD) prediction (ODP) model, namely, knowledge-enhanced hybrid spatial–temporal graph neural networks (KE-H-GNN). KE-H-GNN integrates a deep learning predictive model with traffic engineering domain knowledge and a multi-linear regression (MLR) module for incorporating external factors. Leveraging insights from the gravity model, we propose two meaningful region partitioning strategies for reducing data dimension: election districts and K-means clustering. The aggregated OD matrices and graph inputs are processed using an long short-term memory network to capture temporal correlations and a multi-graph input graph convolutional network module to capture spatial correlations. The model also employs a global–local attention module, inspired by traffic flow theory, to capture nonlinear spatial features. Finally, an MLR module was designed to quantify the relationship between OD matrices and external factors. Experiments on real-world datasets from New York and Tokyo demonstrate that KE-H-GNN outperforms all the baseline models while maintaining interpretability. Additionally, the MLR module outperformed the concatenation method for integrating external factors, regarding both performance and transparency. Moreover, the election district-based partitioning approach proved more effective and simpler for practical applications. The proposed KE-H-GNN offers an effective and interpretable solution for ODP that can be practically applied in real-world scenarios.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.