Imine Reductase-Catalyzed Synthesis of a Key Intermediate of Avacopan: Enzymatic Oxidative Kinetic Resolution with Ex Situ Recovery and Dynamic Kinetic Reduction Strategies toward 2,3-Disubstituted Piperidine
Zsuzsa Juhász Pótáriné, Tihamér Paál, Lajos Mészáros, Gergely Bánóczi, Zoltán Kondor, Napsugár Kavalecz, Andrea Zsuzsanna Ujvárosi, János Végh, Dániel Eszenyi, Gábor J. Zahuczky, Ram Prajapaty, Rushikesh Kadu, Vadivelan Rengasamy, Imre Gyűjtő
{"title":"Imine Reductase-Catalyzed Synthesis of a Key Intermediate of Avacopan: Enzymatic Oxidative Kinetic Resolution with Ex Situ Recovery and Dynamic Kinetic Reduction Strategies toward 2,3-Disubstituted Piperidine","authors":"Zsuzsa Juhász Pótáriné, Tihamér Paál, Lajos Mészáros, Gergely Bánóczi, Zoltán Kondor, Napsugár Kavalecz, Andrea Zsuzsanna Ujvárosi, János Végh, Dániel Eszenyi, Gábor J. Zahuczky, Ram Prajapaty, Rushikesh Kadu, Vadivelan Rengasamy, Imre Gyűjtő","doi":"10.1021/acs.oprd.4c00511","DOIUrl":null,"url":null,"abstract":"Imine reductase (IRED) enzymes catalyze the asymmetric reduction of cyclic imines and have recently gained attention due to their reductive aminase (RedAm) activity. Herein, we demonstrated their ability to control the two vicinal stereogenic centers in an N-heterocyclic system. By reversing their usual mode of action, the oxidative kinetic resolution (KR) of the <i>rac-cis</i>-<b>1</b> piperidine intermediate of avacopan was used to leave the (2<i>R</i>,3<i>S</i>)-<b>1</b> desired enantiomer untouched, whereas the undesired enantiomer was oxidized and tautomerized to enamine <b>4</b>. The synthesis was improved by using alcohol dehydrogenase (ADH) for cofactor regeneration, and <b>4</b> was recycled by catalytic hydrogenation to <i>rac-cis</i>-<b>1</b>. Hence, KR was carried out on a 1 kg scale with 99.5% <i>ee</i> and 37.2 g/L/d space-time yield (STY). One cycle of recycling of <b>4</b> enamine was confirmed at the kg scale in 83.7% yield, which resulted after the bioconversion of (2<i>R</i>,3<i>S</i>)-<b>1</b> with a total yield of 57.8% (theoretical maximum KR of 50%). Repetitive sequences of KR with ex situ recycling of <b>4</b> afforded an overall theoretical yield of 72%. Moreover, an enantiocomplementary enzyme was utilized for the dynamic kinetic reduction of <b>4</b> to (2<i>R</i>,3<i>S</i>)-<b>1</b> with excellent diastereoselectivity.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"197 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00511","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Imine reductase (IRED) enzymes catalyze the asymmetric reduction of cyclic imines and have recently gained attention due to their reductive aminase (RedAm) activity. Herein, we demonstrated their ability to control the two vicinal stereogenic centers in an N-heterocyclic system. By reversing their usual mode of action, the oxidative kinetic resolution (KR) of the rac-cis-1 piperidine intermediate of avacopan was used to leave the (2R,3S)-1 desired enantiomer untouched, whereas the undesired enantiomer was oxidized and tautomerized to enamine 4. The synthesis was improved by using alcohol dehydrogenase (ADH) for cofactor regeneration, and 4 was recycled by catalytic hydrogenation to rac-cis-1. Hence, KR was carried out on a 1 kg scale with 99.5% ee and 37.2 g/L/d space-time yield (STY). One cycle of recycling of 4 enamine was confirmed at the kg scale in 83.7% yield, which resulted after the bioconversion of (2R,3S)-1 with a total yield of 57.8% (theoretical maximum KR of 50%). Repetitive sequences of KR with ex situ recycling of 4 afforded an overall theoretical yield of 72%. Moreover, an enantiocomplementary enzyme was utilized for the dynamic kinetic reduction of 4 to (2R,3S)-1 with excellent diastereoselectivity.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.