Realizing Li Concentration and Particle Size Gradients in Ni-Rich Cathode for Superior Electrochemical Performance in Oxygen-Deficient Atmospheres

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-03-18 DOI:10.1002/adfm.202424823
Seok Hyun Song, Kyoung Sun Kim, Seokjae Hong, Jong Hyeok Seo, Ji-Hwan Kwon, Minjeong Gong, Jung-Je Woo, Inchul Park, Kyu-Young Park, Dong-Hwa Seo, Chunjoong Kim, Hyeokjun Park, Seung-Ho Yu, Hyungsub Kim
{"title":"Realizing Li Concentration and Particle Size Gradients in Ni-Rich Cathode for Superior Electrochemical Performance in Oxygen-Deficient Atmospheres","authors":"Seok Hyun Song,&nbsp;Kyoung Sun Kim,&nbsp;Seokjae Hong,&nbsp;Jong Hyeok Seo,&nbsp;Ji-Hwan Kwon,&nbsp;Minjeong Gong,&nbsp;Jung-Je Woo,&nbsp;Inchul Park,&nbsp;Kyu-Young Park,&nbsp;Dong-Hwa Seo,&nbsp;Chunjoong Kim,&nbsp;Hyeokjun Park,&nbsp;Seung-Ho Yu,&nbsp;Hyungsub Kim","doi":"10.1002/adfm.202424823","DOIUrl":null,"url":null,"abstract":"<p>To extend the lifespan of Ni-rich layered oxide cathodes, doping, coating, and particle-morphology optimization strategies have been explored, though these approaches often result in reduced reversible capacity. In this study, a novel LiNi<sub>0.92</sub>Co<sub>0.04</sub>Mn<sub>0.04</sub>O<sub>2</sub> cathode is introduced featuring gradients in Li concentration and particle size at the secondary-particle level. By controlling the oxygen partial pressure during synthesis, enhanced cycle stability is achieved without compromising the capacity of this unique structure. Contrary to common knowledge, the superior performance of cathode materials synthesized under oxygen-deficient conditions is reported, delivering a remarkable capacity of 226.7 mAh g<sup>−1</sup> and robust cycle retention of 87.23% after 200 cycles. These electrodes achieve 85.08% capacity retention at 2 C/0.1 C, demonstrating excellent rate performance. Comprehensive diffraction and microscopy analyses identify secondary particles with Li-excess structures on their surfaces (characterized by larger primary particles) and stoichiometric structures in the core (featuring smaller primary particles). This dual-gradient structure enhances performance by suppressing surface reactions and stabilizing the bulk. Furthermore, the electrodes retain pristine microstructure during electrochemical cycling, minimize lattice contraction (3.86%), and suppress H2-to-H3 transitions. This study highlights the potential of using Li concentration gradients to mitigate surface side reactions, paving the way for the development of durable, high-capacity, and cost-effective cathodes.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 34","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202424823","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To extend the lifespan of Ni-rich layered oxide cathodes, doping, coating, and particle-morphology optimization strategies have been explored, though these approaches often result in reduced reversible capacity. In this study, a novel LiNi0.92Co0.04Mn0.04O2 cathode is introduced featuring gradients in Li concentration and particle size at the secondary-particle level. By controlling the oxygen partial pressure during synthesis, enhanced cycle stability is achieved without compromising the capacity of this unique structure. Contrary to common knowledge, the superior performance of cathode materials synthesized under oxygen-deficient conditions is reported, delivering a remarkable capacity of 226.7 mAh g−1 and robust cycle retention of 87.23% after 200 cycles. These electrodes achieve 85.08% capacity retention at 2 C/0.1 C, demonstrating excellent rate performance. Comprehensive diffraction and microscopy analyses identify secondary particles with Li-excess structures on their surfaces (characterized by larger primary particles) and stoichiometric structures in the core (featuring smaller primary particles). This dual-gradient structure enhances performance by suppressing surface reactions and stabilizing the bulk. Furthermore, the electrodes retain pristine microstructure during electrochemical cycling, minimize lattice contraction (3.86%), and suppress H2-to-H3 transitions. This study highlights the potential of using Li concentration gradients to mitigate surface side reactions, paving the way for the development of durable, high-capacity, and cost-effective cathodes.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富镍阴极中Li浓度和粒度梯度的实现及其在缺氧环境下优异的电化学性能
为了延长富镍层状氧化物阴极的使用寿命,人们探索了掺杂、涂层和颗粒形态优化策略,尽管这些方法通常会导致可逆容量的降低。在本研究中,引入了一种新型的lini0.92 co0.04 mn0.040 o2阴极,该阴极在二级粒子水平上具有Li浓度和粒径梯度。通过控制合成过程中的氧分压,在不影响这种独特结构的能力的情况下实现了增强的循环稳定性。据报道,在缺氧条件下合成的阴极材料性能优越,在200次循环后,其容量达到226.7 mAh g−1,保持率高达87.23%。这些电极在2℃/0.1℃下的容量保持率达到85.08%,表现出优异的倍率性能。综合衍射和显微镜分析发现二次颗粒表面具有锂过量结构(以较大的初级颗粒为特征),核心具有化学计量结构(具有较小的初级颗粒)。这种双梯度结构通过抑制表面反应和稳定体积来提高性能。此外,电极在电化学循环过程中保持原始的微观结构,最大限度地减少晶格收缩(3.86%),并抑制h2到h3的转变。这项研究强调了利用锂浓度梯度来减轻表面副反应的潜力,为开发耐用、高容量和高成本效益的阴极铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Stabilizing Spent LiCoO 2 Through Interface Construction: A Sustainable Route to High‐Performance Cathode Regeneration Polymorph with Triphase Heterojunctions Enhancing Interfacial Stability for Long-Lasting Quasi-Solid-State Lithium Metal Batteries Conductive MOF-Based NiZn Dual Atom Catalyst for Boosted Photoreduction of Diluted CO2: The Effects of Inert Sites Robust and Conductive Polymer Electrolytes via Solvent-Guided Hierarchical Network Formation Uniform SEI design via Solvent Competitions for Stable Anode-Free Zinc Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1