Nazanin Fereidouni, Marwah Aljohani and Andrea Erxleben*,
{"title":"Stacking Interactions in Indomethacin Solid-State Forms","authors":"Nazanin Fereidouni, Marwah Aljohani and Andrea Erxleben*, ","doi":"10.1021/acs.cgd.4c0150710.1021/acs.cgd.4c01507","DOIUrl":null,"url":null,"abstract":"<p >Stacked structures with strong dispersion forces between stack neighbors often lead to anisotropic crystal growth and needlelike morphologies. The crystal structures of a new cocrystal and a molecular salt of indomethacin (IND) are reported: IND·MOA and IND·POBA·0.5H<sub>2</sub>O (MOA = <i>p</i>-methoxyaniline, POBA = 4-phenoxybenzylamine). In both structures, the IND and coformer molecules/ions are stacked and IND adopts the unusual conformation found in the α-polymorph of pure IND, resulting in a relatively short distance of about 3 Å between the methyl group and the C1′-atom of the chlorophenyl ring. While IND·MOA and IND·POBA·0.5H<sub>2</sub>O both crystallize as needles like α-IND, the weaker stacking interactions of the coformer in the IND·MOA cocrystal lead to shorter and thicker needles. Amorphous IND prepared by milling recrystallizes to the stable γ-polymorph without the metastable α-form being detected. When IND is milled in the presence of 2.5 wt % MOA, the amorphous phase converts to α-IND. The effect of small amounts of the coformer on the recrystallization route is attributed to a templating effect of the cocrystal formed during milling and/or the facilitation of the conversion to the α-phase conformation.</p><p >Low levels of <i>p</i>-methoxyaniline affect the recrystallization pathway of milled, amorphous indomethacin, which is attributed to traces of cocrystal formation during milling.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 6","pages":"1776–1784 1776–1784"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.4c01507","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01507","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stacked structures with strong dispersion forces between stack neighbors often lead to anisotropic crystal growth and needlelike morphologies. The crystal structures of a new cocrystal and a molecular salt of indomethacin (IND) are reported: IND·MOA and IND·POBA·0.5H2O (MOA = p-methoxyaniline, POBA = 4-phenoxybenzylamine). In both structures, the IND and coformer molecules/ions are stacked and IND adopts the unusual conformation found in the α-polymorph of pure IND, resulting in a relatively short distance of about 3 Å between the methyl group and the C1′-atom of the chlorophenyl ring. While IND·MOA and IND·POBA·0.5H2O both crystallize as needles like α-IND, the weaker stacking interactions of the coformer in the IND·MOA cocrystal lead to shorter and thicker needles. Amorphous IND prepared by milling recrystallizes to the stable γ-polymorph without the metastable α-form being detected. When IND is milled in the presence of 2.5 wt % MOA, the amorphous phase converts to α-IND. The effect of small amounts of the coformer on the recrystallization route is attributed to a templating effect of the cocrystal formed during milling and/or the facilitation of the conversion to the α-phase conformation.
Low levels of p-methoxyaniline affect the recrystallization pathway of milled, amorphous indomethacin, which is attributed to traces of cocrystal formation during milling.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.