Prefrontal executive function enhanced by prior acute inhalation of low-dose hypoxic gas: Modulation via cardiac vagal activity

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-03-17 DOI:10.1016/j.neuroimage.2025.121139
Dongmin Lee , Yudai Yamazaki , Ryuta Kuwamizu , Masahiro Okamoto , Hideaki Soya
{"title":"Prefrontal executive function enhanced by prior acute inhalation of low-dose hypoxic gas: Modulation via cardiac vagal activity","authors":"Dongmin Lee ,&nbsp;Yudai Yamazaki ,&nbsp;Ryuta Kuwamizu ,&nbsp;Masahiro Okamoto ,&nbsp;Hideaki Soya","doi":"10.1016/j.neuroimage.2025.121139","DOIUrl":null,"url":null,"abstract":"<div><div>Today, diverse psychophysiological stresses, such as severe time constraints and busy lifestyles, contribute to cardiac parasympathetic dysfunction, potentially leading to mental health issues and declines in critical executive functions. It is essential to develop accessible methods of enhancing cardiac vagal activity (CVA) to mitigate these adverse effects. We previously demonstrated that inhaling low-dose hypoxic gas (FIO₂: 13.5 %) for 10 min acts as a hormetic stressor, inducing a supercompensation effect in CVA post-hypoxia. Since CVA is a key mediator of brain-heart communication in that it influences executive functions by interacting with the left dorsolateral prefrontal cortex (L-DLPFC), increasing CVA may enhance cognitive ability. We hypothesized that acute low-dose hypoxia leads to enhanced executive function via CVA modulation. Twenty-six individuals participated in both normobaric hypoxia (NH; FIO₂: 13.5 %) and normoxia (NN; ambient air) conditions. CVA, measured through heart rate variability, was analyzed three times: pre-hypoxia/normoxia, hypoxia/normoxia, and post-hypoxia/normoxia. Executive function was assessed using the Stroop task before and after exposure, and prefrontal cortex activity during the task was monitored using multichannel functional near-infrared spectroscopy. A supercompensation of CVA occurred concomitantly with a reduction in heart rate following hypoxic gas inhalation. Stroop performance improved with increased task-related activation of the L<span>-DLPFC</span> in the NH condition. Causal mediation analysis revealed that the post-hypoxia enhancement of CVA mediated improvements in Stroop performance and increased L-DLPFC activation. These findings strongly support our hypothesis that the enhancement of CVA following hormetic hypoxic stress contributes to improved executive function, broadening the scope of neurocognitive approaches for effectively enhancing executive function.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"310 ","pages":"Article 121139"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001417","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Today, diverse psychophysiological stresses, such as severe time constraints and busy lifestyles, contribute to cardiac parasympathetic dysfunction, potentially leading to mental health issues and declines in critical executive functions. It is essential to develop accessible methods of enhancing cardiac vagal activity (CVA) to mitigate these adverse effects. We previously demonstrated that inhaling low-dose hypoxic gas (FIO₂: 13.5 %) for 10 min acts as a hormetic stressor, inducing a supercompensation effect in CVA post-hypoxia. Since CVA is a key mediator of brain-heart communication in that it influences executive functions by interacting with the left dorsolateral prefrontal cortex (L-DLPFC), increasing CVA may enhance cognitive ability. We hypothesized that acute low-dose hypoxia leads to enhanced executive function via CVA modulation. Twenty-six individuals participated in both normobaric hypoxia (NH; FIO₂: 13.5 %) and normoxia (NN; ambient air) conditions. CVA, measured through heart rate variability, was analyzed three times: pre-hypoxia/normoxia, hypoxia/normoxia, and post-hypoxia/normoxia. Executive function was assessed using the Stroop task before and after exposure, and prefrontal cortex activity during the task was monitored using multichannel functional near-infrared spectroscopy. A supercompensation of CVA occurred concomitantly with a reduction in heart rate following hypoxic gas inhalation. Stroop performance improved with increased task-related activation of the L-DLPFC in the NH condition. Causal mediation analysis revealed that the post-hypoxia enhancement of CVA mediated improvements in Stroop performance and increased L-DLPFC activation. These findings strongly support our hypothesis that the enhancement of CVA following hormetic hypoxic stress contributes to improved executive function, broadening the scope of neurocognitive approaches for effectively enhancing executive function.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
White matter integrity of hearing and cognitive impairments in healthy aging Prefrontal executive function enhanced by prior acute inhalation of low-dose hypoxic gas: Modulation via cardiac vagal activity Unsupervised identification of internal perceptual states influencing psychomotor performance Age-Related Differences in Speech and Gray Matter Volume: The Modulating Role of Multilingualism. Choline Levels in the Pregenual Anterior Cingulate Cortex Associated with Unpleasant Pain Experience and Anxiety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1