Explainable artificial intelligence models for estimating the heat capacity of deep eutectic solvents

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2025-03-18 DOI:10.1016/j.fuel.2025.135073
Saad Alatefi , Okorie Ekwe Agwu , Menad Nait Amar , Hakim Djema
{"title":"Explainable artificial intelligence models for estimating the heat capacity of deep eutectic solvents","authors":"Saad Alatefi ,&nbsp;Okorie Ekwe Agwu ,&nbsp;Menad Nait Amar ,&nbsp;Hakim Djema","doi":"10.1016/j.fuel.2025.135073","DOIUrl":null,"url":null,"abstract":"<div><div>Deep eutectic solvents (DES) are emerging as a promising alternative to traditional solvents due to their attractive characteristics, including low toxicity, biodegradability, ease of synthesis, and cost-effectiveness. Accurate knowledge of the physical properties of DES, such as heat capacity, is critical for their effective utilization in various applications. To complement expensive and time-consuming experimental measurements, this study presents a comprehensive investigation into the application of advanced machine learning techniques, including Convolutional Neural Networks (CNN), Extreme Learning Machine (ELM), and Long Short-Term Memory (LSTM), for modelling the heat capacity of DES. The developed models were trained and validated using an extensive experimentally measured database comprising 2,696 datasets from 55 DES systems, covering a wide range of compositions and temperatures. The CNN model demonstrated superior performance compared to existing heat capacity correlations, achieving an Average Absolute Percentage Error (AAPE) of 0.982%, an R<sup>2</sup> of 0.997, and a significantly reduced Root Mean Squared Error. The leverage approach was employed to ensure data reliability and confirm the robustness of the proposed paradigms. Moreover, the study utilized the Shapley Additive Explanations (SHAP) method to enhance the CNN model interpretability and validate the influence of input parameters. Physical validation through detailed trend analysis further confirmed the model’s ability to preserve underlying physical relationships. In addition to its predictive accuracy, the proposed CNN model is designed for practical industrial applications. This work demonstrates how the model can be implemented to optimize DES selection and formulation in real-world scenarios, as illustrated by a case study presented in the paper. Overall, this study provides an efficient and reliable tool for the design and optimization of DES, enabling the rapid evaluation of suitable components and compositions while significantly reducing experimental effort.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"394 ","pages":"Article 135073"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125007987","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep eutectic solvents (DES) are emerging as a promising alternative to traditional solvents due to their attractive characteristics, including low toxicity, biodegradability, ease of synthesis, and cost-effectiveness. Accurate knowledge of the physical properties of DES, such as heat capacity, is critical for their effective utilization in various applications. To complement expensive and time-consuming experimental measurements, this study presents a comprehensive investigation into the application of advanced machine learning techniques, including Convolutional Neural Networks (CNN), Extreme Learning Machine (ELM), and Long Short-Term Memory (LSTM), for modelling the heat capacity of DES. The developed models were trained and validated using an extensive experimentally measured database comprising 2,696 datasets from 55 DES systems, covering a wide range of compositions and temperatures. The CNN model demonstrated superior performance compared to existing heat capacity correlations, achieving an Average Absolute Percentage Error (AAPE) of 0.982%, an R2 of 0.997, and a significantly reduced Root Mean Squared Error. The leverage approach was employed to ensure data reliability and confirm the robustness of the proposed paradigms. Moreover, the study utilized the Shapley Additive Explanations (SHAP) method to enhance the CNN model interpretability and validate the influence of input parameters. Physical validation through detailed trend analysis further confirmed the model’s ability to preserve underlying physical relationships. In addition to its predictive accuracy, the proposed CNN model is designed for practical industrial applications. This work demonstrates how the model can be implemented to optimize DES selection and formulation in real-world scenarios, as illustrated by a case study presented in the paper. Overall, this study provides an efficient and reliable tool for the design and optimization of DES, enabling the rapid evaluation of suitable components and compositions while significantly reducing experimental effort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Hierarchical Al-CoP/Ni2P heterostructure for alkaline hydrogen evolution reaction Syngas formation via chemical looping of methane process using Y1La0.6Gd0.4O3 as a novel oxygen carrier Characteristics of antioxidant temperature-sensitive hydrogel inhibiting coal spontaneous combustion Explainable artificial intelligence models for estimating the heat capacity of deep eutectic solvents Recent advances on electrically controlled solid propellants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1