{"title":"Acoustic emission with simulation of simultaneous ultrasonic guided wave propagation & crack propagation","authors":"Fahim Md Mushfiqur Rahman, Sourav Banerjee","doi":"10.1016/j.ultras.2025.107637","DOIUrl":null,"url":null,"abstract":"<div><div>Advancement of computation nondestructive evaluation (CNDE) creates an opportunity to visualize predicted signals received by sensors and may aid the development of artificial intelligence (AI) for NDE 4.0. However, traditional methods face limitations for crack propagation and guided wave propagation simulation, <em>simultaneously.</em> Modeling crack propagation using mesh-based method requires remeshing and implementation of cohesive zone model to name a few alternatives. Multiple meshfree methods have also been implemented for crack propagation but did not immediately translate to simulate the guided waves that are used to interrogate the cracks under nondestructive evaluation (NDE) framework. Ultrasonic CNDE with new era of Machine Learning (ML)/AI requires understanding the signals and its physics-based features when the guided waves propagate to interact with the crack while the crack is simultaneously growing at different time scales. To enable the future of physics to be informed and physics driven ML/AI this article presents a framework of CNDE where guided wave propagation and crack propagation are simultaneously simulated without remeshing and creates an enabling approach for the future AI implementation. A few successful case studies are presented for feasibility demonstration. Detailed flowcharts are presented for easy implementation of the method for the ultrasonic NDE community.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"151 ","pages":"Article 107637"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25000745","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Advancement of computation nondestructive evaluation (CNDE) creates an opportunity to visualize predicted signals received by sensors and may aid the development of artificial intelligence (AI) for NDE 4.0. However, traditional methods face limitations for crack propagation and guided wave propagation simulation, simultaneously. Modeling crack propagation using mesh-based method requires remeshing and implementation of cohesive zone model to name a few alternatives. Multiple meshfree methods have also been implemented for crack propagation but did not immediately translate to simulate the guided waves that are used to interrogate the cracks under nondestructive evaluation (NDE) framework. Ultrasonic CNDE with new era of Machine Learning (ML)/AI requires understanding the signals and its physics-based features when the guided waves propagate to interact with the crack while the crack is simultaneously growing at different time scales. To enable the future of physics to be informed and physics driven ML/AI this article presents a framework of CNDE where guided wave propagation and crack propagation are simultaneously simulated without remeshing and creates an enabling approach for the future AI implementation. A few successful case studies are presented for feasibility demonstration. Detailed flowcharts are presented for easy implementation of the method for the ultrasonic NDE community.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.