Antifungal activity of curcumin-mediated photodynamic inactivation against Fusarium graminearum on maize

Q2 Agricultural and Biological Sciences Grain Oil Science and Technology Pub Date : 2025-03-01 DOI:10.1016/j.gaost.2024.10.003
Shuliang Dong , Lu Chen , Shaojie Li , Konglong Feng , Guang Liu , Hao Dong , Guizhi Xu , Huajian Ou , Yang Liu , Yong Zhao , Jingjing Wang
{"title":"Antifungal activity of curcumin-mediated photodynamic inactivation against Fusarium graminearum on maize","authors":"Shuliang Dong ,&nbsp;Lu Chen ,&nbsp;Shaojie Li ,&nbsp;Konglong Feng ,&nbsp;Guang Liu ,&nbsp;Hao Dong ,&nbsp;Guizhi Xu ,&nbsp;Huajian Ou ,&nbsp;Yang Liu ,&nbsp;Yong Zhao ,&nbsp;Jingjing Wang","doi":"10.1016/j.gaost.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>The natural curcumin-mediated photodynamic inactivation (PDI) was developed, and its inactivation potency against <em>Fusarium graminearum</em> <em>in vitro</em> and <em>in vivo</em> was systematically investigated by fluorescence probe assay, trypan blue staining, scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM), etc. Results showed that under the irradiation of blue LED, the photosensitizer of curcumin was excited to generate massive reactive oxygen species (ROS) in the cells of <em>F. graminearum</em>, and the PDI completely inactivated their mycelia and spores under the treatment of 150 μM curcumin and 10.8 J/cm<sup>2</sup> irradiation. Further analysis found that the PDI ruptured the cellular microstructures, damaged the cell membrane by increasing its permeability and oxidizing the lipids, degraded the intracellular DNA and proteins inside the spores of <em>F. graminearum</em>. Meanwhile, the PDI also potently killed &gt;99.99% spores of <em>F. graminearum</em> on maize under the treatment of 200 μM curcumin and 10.8 J/cm<sup>2</sup> irradiation. Moreover, the PDI suppressed the production of zearalenone (ZEN), and residual ZEN could not be detected after the storage of maize for 10 days. Therefore, this study systematically explored the inactivation efficiency of curcumin-mediated PDI against both the mycelia and spores of <em>F. graminearum</em>, which provides a valid and promising method to control the fungal hazards in grains.</div></div>","PeriodicalId":33614,"journal":{"name":"Grain Oil Science and Technology","volume":"8 1","pages":"Pages 21-31"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grain Oil Science and Technology","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590259824000566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The natural curcumin-mediated photodynamic inactivation (PDI) was developed, and its inactivation potency against Fusarium graminearum in vitro and in vivo was systematically investigated by fluorescence probe assay, trypan blue staining, scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM), etc. Results showed that under the irradiation of blue LED, the photosensitizer of curcumin was excited to generate massive reactive oxygen species (ROS) in the cells of F. graminearum, and the PDI completely inactivated their mycelia and spores under the treatment of 150 μM curcumin and 10.8 J/cm2 irradiation. Further analysis found that the PDI ruptured the cellular microstructures, damaged the cell membrane by increasing its permeability and oxidizing the lipids, degraded the intracellular DNA and proteins inside the spores of F. graminearum. Meanwhile, the PDI also potently killed >99.99% spores of F. graminearum on maize under the treatment of 200 μM curcumin and 10.8 J/cm2 irradiation. Moreover, the PDI suppressed the production of zearalenone (ZEN), and residual ZEN could not be detected after the storage of maize for 10 days. Therefore, this study systematically explored the inactivation efficiency of curcumin-mediated PDI against both the mycelia and spores of F. graminearum, which provides a valid and promising method to control the fungal hazards in grains.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
69
审稿时长
12 weeks
期刊介绍:
期刊最新文献
Effect of chemically modified starch on retrogradation and quality characteristics of semi-dry rice noodles Antifungal activity of curcumin-mediated photodynamic inactivation against Fusarium graminearum on maize Effect of sterilization methods on quality and storage characteristics of tofu fermented by lactic acid bacteria Utilizing low-field NMR for comprehensive quality evaluation of edible oil and oil product Understanding the technological aspects of Hybrid Gel as a substitute for saturated fat in processed food products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1