Development of an artificial intelligence-generated, explainable treatment recommendation system for urothelial carcinoma and renal cell carcinoma to support multidisciplinary cancer conferences

IF 7.6 1区 医学 Q1 ONCOLOGY European Journal of Cancer Pub Date : 2025-03-15 DOI:10.1016/j.ejca.2025.115367
Gregor Duwe , Dominique Mercier , Verena Kauth , Kerstin Moench , Vikas Rajashekar , Markus Junker , Andreas Dengel , Axel Haferkamp , Thomas Höfner
{"title":"Development of an artificial intelligence-generated, explainable treatment recommendation system for urothelial carcinoma and renal cell carcinoma to support multidisciplinary cancer conferences","authors":"Gregor Duwe ,&nbsp;Dominique Mercier ,&nbsp;Verena Kauth ,&nbsp;Kerstin Moench ,&nbsp;Vikas Rajashekar ,&nbsp;Markus Junker ,&nbsp;Andreas Dengel ,&nbsp;Axel Haferkamp ,&nbsp;Thomas Höfner","doi":"10.1016/j.ejca.2025.115367","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Decisions on the best available treatment in clinical oncology are based on expert opinions in multidisciplinary cancer conferences (MCC). Artificial intelligence (AI) could increase evidence-based treatment by generating additional treatment recommendations (TR). We aimed to develop such an AI system for urothelial carcinoma (UC) and renal cell carcinoma (RCC).</div></div><div><h3>Methods</h3><div>Comprehensive data of patients with histologically confirmed UC and RCC who received MCC recommendations in the years 2015 – 2022 were transformed into machine readable representations. Development of a two-step process to train a classifier to mimic TR was followed by identification of superordinate and detailed categories of TR. Machine learning (CatBoost, XGBoost, Random Forest) and deep learning (TabPFN, TabNet, SoftOrdering CNN, FCN) techniques were trained. Results were measured by F1-scores for accuracy weights.</div></div><div><h3>Results</h3><div>AI training was performed with 1617 (UC) and 880 (RCC) MCC recommendations (77 and 76 patient input parameters). The AI system generated fully automated TR with excellent F1-scores for UC (e.g. ‘Surgery’ 0.81, ‘Anti-cancer drug’ 0.83, ‘Gemcitabine/Cisplatin’ 0.88) and RCC (e.g. ‘Anti-cancer drug’ 0.92 ‘Nivolumab’ 0.78, ‘Pembrolizumab/Axitinib’ 0.89). Explainability is provided by clinical features and their importance score. Finally, TR and explainability were visualized on a dashboard.</div></div><div><h3>Conclusion</h3><div>This study demonstrates for the first time AI-generated, explainable TR in UC and RCC with excellent performance results as a potential support tool for high-quality, evidence-based TR in MCC. The comprehensive technical and clinical development sets global reference standards for future AI developments in MCC recommendations in clinical oncology. Next, prospective validation of the results is mandatory.</div></div>","PeriodicalId":11980,"journal":{"name":"European Journal of Cancer","volume":"220 ","pages":"Article 115367"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959804925001480","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Decisions on the best available treatment in clinical oncology are based on expert opinions in multidisciplinary cancer conferences (MCC). Artificial intelligence (AI) could increase evidence-based treatment by generating additional treatment recommendations (TR). We aimed to develop such an AI system for urothelial carcinoma (UC) and renal cell carcinoma (RCC).

Methods

Comprehensive data of patients with histologically confirmed UC and RCC who received MCC recommendations in the years 2015 – 2022 were transformed into machine readable representations. Development of a two-step process to train a classifier to mimic TR was followed by identification of superordinate and detailed categories of TR. Machine learning (CatBoost, XGBoost, Random Forest) and deep learning (TabPFN, TabNet, SoftOrdering CNN, FCN) techniques were trained. Results were measured by F1-scores for accuracy weights.

Results

AI training was performed with 1617 (UC) and 880 (RCC) MCC recommendations (77 and 76 patient input parameters). The AI system generated fully automated TR with excellent F1-scores for UC (e.g. ‘Surgery’ 0.81, ‘Anti-cancer drug’ 0.83, ‘Gemcitabine/Cisplatin’ 0.88) and RCC (e.g. ‘Anti-cancer drug’ 0.92 ‘Nivolumab’ 0.78, ‘Pembrolizumab/Axitinib’ 0.89). Explainability is provided by clinical features and their importance score. Finally, TR and explainability were visualized on a dashboard.

Conclusion

This study demonstrates for the first time AI-generated, explainable TR in UC and RCC with excellent performance results as a potential support tool for high-quality, evidence-based TR in MCC. The comprehensive technical and clinical development sets global reference standards for future AI developments in MCC recommendations in clinical oncology. Next, prospective validation of the results is mandatory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Cancer
European Journal of Cancer 医学-肿瘤学
CiteScore
11.50
自引率
4.80%
发文量
953
审稿时长
23 days
期刊介绍: The European Journal of Cancer (EJC) serves as a comprehensive platform integrating preclinical, digital, translational, and clinical research across the spectrum of cancer. From epidemiology, carcinogenesis, and biology to groundbreaking innovations in cancer treatment and patient care, the journal covers a wide array of topics. We publish original research, reviews, previews, editorial comments, and correspondence, fostering dialogue and advancement in the fight against cancer. Join us in our mission to drive progress and improve outcomes in cancer research and patient care.
期刊最新文献
Development of an artificial intelligence-generated, explainable treatment recommendation system for urothelial carcinoma and renal cell carcinoma to support multidisciplinary cancer conferences Update of the impact of menopausal hormone therapy on breast cancer risk Editorial Board Immune checkpoint inhibition in metastatic or non-resectable melanoma after failure of adjuvant anti-PD-1 treatment. A EUMelaReg real-world evidence study Adjuvant chemotherapy compared to observation in resected biliary tract cancers: Survival meta-analysis of phase-III randomized controlled trials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1