Encapsulation of chiral CoII(R,R)(salen) in mesocellular foam as an efficient heterogeneous catalyst for asymmetric electrocarboxylation of 1-phenylethyl chloride with CO2

IF 2.1 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Journal of Organometallic Chemistry Pub Date : 2025-03-13 DOI:10.1016/j.jorganchem.2025.123621
Meng-han Li , Feng Zhang , Bao-Han Shan , Yue Zhao , Jia-Xing Lu , Huan Wang
{"title":"Encapsulation of chiral CoII(R,R)(salen) in mesocellular foam as an efficient heterogeneous catalyst for asymmetric electrocarboxylation of 1-phenylethyl chloride with CO2","authors":"Meng-han Li ,&nbsp;Feng Zhang ,&nbsp;Bao-Han Shan ,&nbsp;Yue Zhao ,&nbsp;Jia-Xing Lu ,&nbsp;Huan Wang","doi":"10.1016/j.jorganchem.2025.123621","DOIUrl":null,"url":null,"abstract":"<div><div>The electrocarboxylation of organic molecules with CO<sub>2</sub> allows the synthesis of important carboxylic acids under mild conditions. The introduction of chiral sources enables the catalytic asymmetric synthesis of chiral carboxylic acids using CO<sub>2</sub> as a C1 source, which has important application prospects. In this work, we have successfully prepared chiral immobilized electrode materials by encapsulating chiral Co<sup>II</sup>(R,R)(salen) (Co<sup>II</sup>L) complexes in the pores of mesocellular foam (MCF) materials using the strategy of silanization to reduce the pore size. The prepared Co<sup>II</sup>L@MCF composites exhibited good electrocatalytic performance in the asymmetric electrocarboxylation of 1-phenylethyl chloride with CO<sub>2</sub>, leading to the synthesis of chiral 2-phenylpropionic acid with an enantiomeric excess value of 71% and a yield of 49%. The encapsulated Co<sup>II</sup>L@MCF composites can significantly reduce the amount of chiral Co<sup>II</sup>L complexes used. Moreover, they are stable, easy to separate, and have excellent reusability.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1032 ","pages":"Article 123621"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X25001159","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocarboxylation of organic molecules with CO2 allows the synthesis of important carboxylic acids under mild conditions. The introduction of chiral sources enables the catalytic asymmetric synthesis of chiral carboxylic acids using CO2 as a C1 source, which has important application prospects. In this work, we have successfully prepared chiral immobilized electrode materials by encapsulating chiral CoII(R,R)(salen) (CoIIL) complexes in the pores of mesocellular foam (MCF) materials using the strategy of silanization to reduce the pore size. The prepared CoIIL@MCF composites exhibited good electrocatalytic performance in the asymmetric electrocarboxylation of 1-phenylethyl chloride with CO2, leading to the synthesis of chiral 2-phenylpropionic acid with an enantiomeric excess value of 71% and a yield of 49%. The encapsulated CoIIL@MCF composites can significantly reduce the amount of chiral CoIIL complexes used. Moreover, they are stable, easy to separate, and have excellent reusability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中孔泡沫包封手性CoII(R,R)(salen)作为1-苯乙基氯与CO2不对称电羧化反应的高效多相催化剂
有机分子与二氧化碳的电羧基化可以在温和的条件下合成重要的羧酸。手性源的引入使得以CO2为C1源催化不对称合成手性羧酸具有重要的应用前景。在本研究中,我们利用硅烷化策略将手性CoII(R,R)(salen) (coil)配合物包封在介孔泡沫(MCF)材料的孔隙中,成功制备了手性固定化电极材料。所制备的CoIIL@MCF复合材料在1-苯乙基氯与CO2的不对称电羧化反应中表现出良好的电催化性能,可合成手性2-苯丙酸,对映体过量值为71%,产率为49%。封装CoIIL@MCF复合材料可以显著减少手性线圈配合物的用量。此外,它们稳定,易于分离,具有良好的可重用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Organometallic Chemistry
Journal of Organometallic Chemistry 化学-无机化学与核化学
CiteScore
4.40
自引率
8.70%
发文量
221
审稿时长
36 days
期刊介绍: The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds. Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome. The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.
期刊最新文献
Construction of MWCNTs/MNPs-based copper nanocomposite as an efficient and reusable catalyst for four-component preparation of highly substituted pyridines High-yielding preparation of Diaryl ketones via carbonylative cross-coupling reactions using a magnetic/carbon nanotube supported palladium catalyst in DESs solvent Editorial Board Graphical abstract TOC Contents continued
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1