Hang Yin , Haibo Yang , Yuncai Hu , Fei Li , Kang Yu
{"title":"Improving the transferability of potato nitrogen concentration estimation models based on hybrid feature selection and Gaussian process regression","authors":"Hang Yin , Haibo Yang , Yuncai Hu , Fei Li , Kang Yu","doi":"10.1016/j.eja.2025.127611","DOIUrl":null,"url":null,"abstract":"<div><div>Feature selection methods are widely used to improve the performance of plant nitrogen concentration (PNC) estimation models. However, the performance of individual feature selection methods can vary across different environments due to various uncertainties. This study aimed to propose a hybrid feature selection method to accurately identify the sensitive bands for the PNC estimation. Field experiments with different potato cultivars and N treatments were carried out in the Inner Mongolia during 2018, 2019, and 2021. The results showed that the hybrid feature selection method can effectively identify the sensitive bands for PNC. When combined with variational heteroscedastic Gaussian process regression (VHGPR), the hybrid method significantly improves the prediction accuracy of potato PNC. Validation using an independent dataset demonstrated that the hybrid feature selection method achieved the highest prediction accuracy compared to traditional feature selection methods, with the mean coefficient of determination (R²) increasing by 16.27 %. Additionally, the performance of VHGPR was benchmarked against partial least squares regression (PLSR). The results indicated that the VHGPR model outperforms the PLSR model across various data types, with a mean R² improvement of 8.92 %. In conclusion, combining the hybrid feature selection method with VHGPR can facilitate real-time PNC estimation in the field, thereby assisting farmers in accurately applying nitrogen fertilization strategies.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"168 ","pages":"Article 127611"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030125001078","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Feature selection methods are widely used to improve the performance of plant nitrogen concentration (PNC) estimation models. However, the performance of individual feature selection methods can vary across different environments due to various uncertainties. This study aimed to propose a hybrid feature selection method to accurately identify the sensitive bands for the PNC estimation. Field experiments with different potato cultivars and N treatments were carried out in the Inner Mongolia during 2018, 2019, and 2021. The results showed that the hybrid feature selection method can effectively identify the sensitive bands for PNC. When combined with variational heteroscedastic Gaussian process regression (VHGPR), the hybrid method significantly improves the prediction accuracy of potato PNC. Validation using an independent dataset demonstrated that the hybrid feature selection method achieved the highest prediction accuracy compared to traditional feature selection methods, with the mean coefficient of determination (R²) increasing by 16.27 %. Additionally, the performance of VHGPR was benchmarked against partial least squares regression (PLSR). The results indicated that the VHGPR model outperforms the PLSR model across various data types, with a mean R² improvement of 8.92 %. In conclusion, combining the hybrid feature selection method with VHGPR can facilitate real-time PNC estimation in the field, thereby assisting farmers in accurately applying nitrogen fertilization strategies.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.