AI-Powered Resilience: A Dual-Approach for Outage Management in Dense Cellular Networks

IF 4.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Communications Pub Date : 2025-03-12 DOI:10.1016/j.comcom.2025.108129
Waseem Raza , Muhammad Umar Bin Farooq , Aneeqa Ijaz , Marvin Manalastas , Ali Imran
{"title":"AI-Powered Resilience: A Dual-Approach for Outage Management in Dense Cellular Networks","authors":"Waseem Raza ,&nbsp;Muhammad Umar Bin Farooq ,&nbsp;Aneeqa Ijaz ,&nbsp;Marvin Manalastas ,&nbsp;Ali Imran","doi":"10.1016/j.comcom.2025.108129","DOIUrl":null,"url":null,"abstract":"<div><div>As 5G evolves to 6G, network management faces growing challenges with increasing base station density, leading to more frequent outages. To address this, we introduce a robust, automated two-tier framework for outage management. The first tier involves an artificial intelligence-based outage detection scheme using an enhanced XGBoost model (Impv-XGBoost), which incorporates autoencoder outputs for hyperparameter tuning. The analysis shows Impv-XGBoost’s superior performance in high shadowing conditions and with sparse data, outperforming existing methods. The second tier adopts an actor–critic reinforcement learning strategy for outage compensation by adjusting the tilt of the neighboring base station and power. To prevent service declines to connected user equipment, our compensation scheme accounts for both outage-affected users and those connected to compensating base stations. We design a reward scheme that combines Jain’s fairness index and the geometric mean of the reference signal received power to ensure fairness and enhance convergence. Performance evaluations for single and multiple base station failures show coverage improvements for outage-affected users without compromising the coverage of the users in compensating base stations.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"236 ","pages":"Article 108129"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366425000866","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As 5G evolves to 6G, network management faces growing challenges with increasing base station density, leading to more frequent outages. To address this, we introduce a robust, automated two-tier framework for outage management. The first tier involves an artificial intelligence-based outage detection scheme using an enhanced XGBoost model (Impv-XGBoost), which incorporates autoencoder outputs for hyperparameter tuning. The analysis shows Impv-XGBoost’s superior performance in high shadowing conditions and with sparse data, outperforming existing methods. The second tier adopts an actor–critic reinforcement learning strategy for outage compensation by adjusting the tilt of the neighboring base station and power. To prevent service declines to connected user equipment, our compensation scheme accounts for both outage-affected users and those connected to compensating base stations. We design a reward scheme that combines Jain’s fairness index and the geometric mean of the reference signal received power to ensure fairness and enhance convergence. Performance evaluations for single and multiple base station failures show coverage improvements for outage-affected users without compromising the coverage of the users in compensating base stations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Communications
Computer Communications 工程技术-电信学
CiteScore
14.10
自引率
5.00%
发文量
397
审稿时长
66 days
期刊介绍: Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms. Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.
期刊最新文献
Efficient paths determining strategies in Mobile Crowd-sensing Networks with AI-based sensors forwarding data Target Wake Time in IEEE 802.11 WLANs: Survey, Challenges, and Opportunities Energy efficient LEO satellite communications: Traffic-aware payload switch-off techniques AI-Powered Resilience: A Dual-Approach for Outage Management in Dense Cellular Networks IoT edge network interoperability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1