Sedir Mohammed , Lukas Budach , Moritz Feuerpfeil , Nina Ihde , Andrea Nathansen , Nele Noack , Hendrik Patzlaff , Felix Naumann , Hazar Harmouch
{"title":"The effects of data quality on machine learning performance on tabular data","authors":"Sedir Mohammed , Lukas Budach , Moritz Feuerpfeil , Nina Ihde , Andrea Nathansen , Nele Noack , Hendrik Patzlaff , Felix Naumann , Hazar Harmouch","doi":"10.1016/j.is.2025.102549","DOIUrl":null,"url":null,"abstract":"<div><div>Modern artificial intelligence (AI) applications require large quantities of training and test data. This need creates critical challenges not only concerning the availability of such data, but also regarding its quality. For example, incomplete, erroneous, or inappropriate training data can lead to unreliable models that produce ultimately poor decisions. Trustworthy AI applications require high-quality training and test data along many quality dimensions, such as accuracy, completeness, and consistency.</div><div>We explore empirically the relationship between six data quality dimensions and the performance of 19 popular machine learning algorithms covering the tasks of classification, regression, and clustering, with the goal of explaining their performance in terms of data quality. Our experiments distinguish three scenarios based on the AI pipeline steps that were fed with polluted data: polluted training data, test data, or both. We conclude the paper with an extensive discussion of our observations.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"132 ","pages":"Article 102549"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437925000341","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Modern artificial intelligence (AI) applications require large quantities of training and test data. This need creates critical challenges not only concerning the availability of such data, but also regarding its quality. For example, incomplete, erroneous, or inappropriate training data can lead to unreliable models that produce ultimately poor decisions. Trustworthy AI applications require high-quality training and test data along many quality dimensions, such as accuracy, completeness, and consistency.
We explore empirically the relationship between six data quality dimensions and the performance of 19 popular machine learning algorithms covering the tasks of classification, regression, and clustering, with the goal of explaining their performance in terms of data quality. Our experiments distinguish three scenarios based on the AI pipeline steps that were fed with polluted data: polluted training data, test data, or both. We conclude the paper with an extensive discussion of our observations.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.