Metal-organic framework materials in NH3-SCR: Progress and prospects

IF 23.5 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Coordination Chemistry Reviews Pub Date : 2025-03-19 DOI:10.1016/j.ccr.2025.216615
Kunli Song , Xiangbo Feng , Nan Zhang , Dandan Ma , Le Shi , Yu Chen , Jun Li , Jian-Wen Shi
{"title":"Metal-organic framework materials in NH3-SCR: Progress and prospects","authors":"Kunli Song ,&nbsp;Xiangbo Feng ,&nbsp;Nan Zhang ,&nbsp;Dandan Ma ,&nbsp;Le Shi ,&nbsp;Yu Chen ,&nbsp;Jun Li ,&nbsp;Jian-Wen Shi","doi":"10.1016/j.ccr.2025.216615","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic framework (MOF) materials have emerged as promising catalysts in the selective catalytic reduction (SCR) of nitrogen oxides (NO<sub><em>x</em></sub>) using NH<sub>3</sub>. This review highlights the various types of MOF materials commonly applied in NH<sub>3</sub>-SCR processes, including UiO-66, MIL-101, MIL-100, HKUST-1 (Cu-BTC), ZIF-8, ZIF-67, and other BTC series catalysts. Additionally, it provides a comprehensive analysis of the NH<sub>3</sub>-SCR denitrification (de-NO<sub><em>x</em></sub>) reaction mechanism occurring on MOF materials, encompassing active sites, intermediate states, and reaction processes. Furthermore, the review conducts a thorough analysis of the poisoning mechanisms of water, sulfur, alkali metal, and alkaline-earth metal that may occur during NH<sub>3</sub>-SCR reactions with MOF materials, along with strategies to enhance their tolerance to poisoning. The challenges that MOF materials face in NH<sub>3</sub>-SCR de-NO<sub><em>x</em></sub> applications are outlined, alongside prospective future directions and applications. Effective strategies, such as constructing protective sites, modifying coordination structures, tuning pore architectures, and designing multi-metal active centers, are proposed to improve the redox and acid cycles and the tolerance to poisoning in NH<sub>3</sub>-SCR reactions. In conclusion, MOF materials hold tremendous potential in de-NO<sub><em>x</em></sub> catalysis, but practical gaps relative to industrial demands remain. This review aims to bridge these gaps and enhance the feasibility and efficiency of their industrial applications. Attention is drawn to the importance of continued research and development to optimize these materials for practical use, ensuring they meet the robustness, durability, and performance required for large-scale implementation in NH<sub>3</sub>-SCR de-NO<sub>x</sub> technologies.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"535 ","pages":"Article 216615"},"PeriodicalIF":23.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854525001857","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic framework (MOF) materials have emerged as promising catalysts in the selective catalytic reduction (SCR) of nitrogen oxides (NOx) using NH3. This review highlights the various types of MOF materials commonly applied in NH3-SCR processes, including UiO-66, MIL-101, MIL-100, HKUST-1 (Cu-BTC), ZIF-8, ZIF-67, and other BTC series catalysts. Additionally, it provides a comprehensive analysis of the NH3-SCR denitrification (de-NOx) reaction mechanism occurring on MOF materials, encompassing active sites, intermediate states, and reaction processes. Furthermore, the review conducts a thorough analysis of the poisoning mechanisms of water, sulfur, alkali metal, and alkaline-earth metal that may occur during NH3-SCR reactions with MOF materials, along with strategies to enhance their tolerance to poisoning. The challenges that MOF materials face in NH3-SCR de-NOx applications are outlined, alongside prospective future directions and applications. Effective strategies, such as constructing protective sites, modifying coordination structures, tuning pore architectures, and designing multi-metal active centers, are proposed to improve the redox and acid cycles and the tolerance to poisoning in NH3-SCR reactions. In conclusion, MOF materials hold tremendous potential in de-NOx catalysis, but practical gaps relative to industrial demands remain. This review aims to bridge these gaps and enhance the feasibility and efficiency of their industrial applications. Attention is drawn to the importance of continued research and development to optimize these materials for practical use, ensuring they meet the robustness, durability, and performance required for large-scale implementation in NH3-SCR de-NOx technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NH3-SCR中金属有机骨架材料的研究进展与展望
金属-有机骨架(MOF)材料在NH3选择性催化还原氮氧化物(NOx)过程中具有广阔的应用前景。本文综述了NH3-SCR工艺中常用的几种MOF材料,包括uhio -66、MIL-101、MIL-100、HKUST-1 (Cu-BTC)、ZIF-8、ZIF-67以及其他BTC系列催化剂。此外,它还提供了MOF材料上NH3-SCR脱硝(脱硝)反应机理的全面分析,包括活性位点、中间态和反应过程。此外,本文还深入分析了NH3-SCR与MOF材料反应过程中可能发生的水、硫、碱金属和碱土金属中毒机制,以及提高MOF材料耐中毒能力的策略。概述了MOF材料在NH3-SCR脱硝应用中面临的挑战,以及未来的发展方向和应用前景。在NH3-SCR反应中,通过构建保护位点、改变配位结构、调整孔结构、设计多金属活性中心等措施,提高了NH3-SCR反应的氧化还原和酸循环,提高了NH3-SCR反应的耐中毒能力。综上所述,MOF材料在脱硝催化方面具有巨大的潜力,但相对于工业需求的实际差距仍然存在。本文旨在弥补这些差距,提高其工业应用的可行性和效率。人们注意到持续研究和开发的重要性,以优化这些材料的实际应用,确保它们满足大规模实施NH3-SCR脱硝技术所需的坚固性、耐用性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Coordination Chemistry Reviews
Coordination Chemistry Reviews 化学-无机化学与核化学
CiteScore
34.30
自引率
5.30%
发文量
457
审稿时长
54 days
期刊介绍: Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers. The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.
期刊最新文献
A review of rare earth-modified transition metal-based electrocatalysts for oxygen evolution reaction Rational design of artificial solid electrolyte interphases for stable zinc metal anodes: mechanistic insights, construction strategies, and practical implementation Editorial Board Metal single-atom absorbers for electromagnetic wave attenuation: mechanism, regulation strategies and perspectives Multicomponent metal-organic frameworks: Structural diversity and functional synergy through mixed metals and ligands in biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1