{"title":"Wavelet-based time-domain double-fed induction generator differential protection","authors":"R.P. Medeiros , L.S. Barros , F.B. Costa , F.E.V. Taveiros","doi":"10.1016/j.epsr.2025.111622","DOIUrl":null,"url":null,"abstract":"<div><div>Double-fed induction generators (DFIGs) must remain connected to the grid for a specific time during faults on the grid but must be immediately disconnected during short circuits inside of their protection zone, such as faults in the stator or rotor windings, to reduce potential damage risks. Currently, there is no reliable solution to discern whether a fault is external or internal to the DFIG protection zone. The differential protection appears suitable for this purpose, yet few studies have applied this protection to DFIGs. Additionally, there is insufficient evidence regarding the effectiveness of differential protection schemes in detecting faults in DFIG. This paper introduces a new algorithm for protecting the DFIG in the time domain using wavelets. The method utilizes high- and low-frequency components of the stator and rotor currents on the d- and q-axis to offer fast and dependable protection for the DFIG. The proposed approach was compared to existing differential protection regarding success rate and average response time across various events, including faults on the grid and turn-to-turn faults on the stator and rotor. The results indicate that the proposed protection outperforms the existing one and is the fastest in detecting turn-to-turn faults on the stator and rotor windings.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"245 ","pages":"Article 111622"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779625002147","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Double-fed induction generators (DFIGs) must remain connected to the grid for a specific time during faults on the grid but must be immediately disconnected during short circuits inside of their protection zone, such as faults in the stator or rotor windings, to reduce potential damage risks. Currently, there is no reliable solution to discern whether a fault is external or internal to the DFIG protection zone. The differential protection appears suitable for this purpose, yet few studies have applied this protection to DFIGs. Additionally, there is insufficient evidence regarding the effectiveness of differential protection schemes in detecting faults in DFIG. This paper introduces a new algorithm for protecting the DFIG in the time domain using wavelets. The method utilizes high- and low-frequency components of the stator and rotor currents on the d- and q-axis to offer fast and dependable protection for the DFIG. The proposed approach was compared to existing differential protection regarding success rate and average response time across various events, including faults on the grid and turn-to-turn faults on the stator and rotor. The results indicate that the proposed protection outperforms the existing one and is the fastest in detecting turn-to-turn faults on the stator and rotor windings.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.