Comparative evaluation of Pluronic® micelles encapsulation efficiency for a diverse range of hydrophobic drugs: Implications for drug delivery

IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of the Indian Chemical Society Pub Date : 2025-03-14 DOI:10.1016/j.jics.2025.101670
Sunil Desai , Deep Bhalani , Dhruv Jasoliya , Vinaydeep Punetha , Shital D. Modi , Debes Ray , Vinod K. Aswal , Sadafara A. Pillai
{"title":"Comparative evaluation of Pluronic® micelles encapsulation efficiency for a diverse range of hydrophobic drugs: Implications for drug delivery","authors":"Sunil Desai ,&nbsp;Deep Bhalani ,&nbsp;Dhruv Jasoliya ,&nbsp;Vinaydeep Punetha ,&nbsp;Shital D. Modi ,&nbsp;Debes Ray ,&nbsp;Vinod K. Aswal ,&nbsp;Sadafara A. Pillai","doi":"10.1016/j.jics.2025.101670","DOIUrl":null,"url":null,"abstract":"<div><div>The encapsulation of hydrophobic drugs within micellar carriers is a promising approach to improve their solubility, stability, and bioavailability. In this study, we conduct a thorough comparative analysis of the encapsulation capability of Pluronic® 103 micelle, known for its unique amphiphilic nature, which serves as nano-carriers for three hydrophobic drugs, viz. meloxicam, norfloxacin, and flurbiprofen. These drugs were chosen for their varying chemical structures and physicochemical properties. The interaction of these drugs with polymeric micelles was checked using Fourier transform infrared spectroscopy (FT-IR). Further, the study investigates the influence of salt on the micellar size and drug-loading efficiency of Pluronic® micelles for different drugs using a plethora of techniques such as dynamic light scattering (DLS), small angle neutron scattering (SANS), and high-performance liquid chromatography. Our results indicate that the presence of salt promotes micellization and significant differences in encapsulation efficiency among the drugs were noted, attributed to the interplay between the drug's hydrophobicity and the micellar core's compatibility. Further, the experimental findings revealed that Norfloxacin exhibited the highest encapsulation efficiency, while meloxicam showed the minimum. The outcomes of the study provide valuable insights into the drug-specific encapsulation behavior of Pluronic® micelles, offering guidance for the design of micellar drug delivery systems tailored to specific therapeutic agents.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101670"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452225001050","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The encapsulation of hydrophobic drugs within micellar carriers is a promising approach to improve their solubility, stability, and bioavailability. In this study, we conduct a thorough comparative analysis of the encapsulation capability of Pluronic® 103 micelle, known for its unique amphiphilic nature, which serves as nano-carriers for three hydrophobic drugs, viz. meloxicam, norfloxacin, and flurbiprofen. These drugs were chosen for their varying chemical structures and physicochemical properties. The interaction of these drugs with polymeric micelles was checked using Fourier transform infrared spectroscopy (FT-IR). Further, the study investigates the influence of salt on the micellar size and drug-loading efficiency of Pluronic® micelles for different drugs using a plethora of techniques such as dynamic light scattering (DLS), small angle neutron scattering (SANS), and high-performance liquid chromatography. Our results indicate that the presence of salt promotes micellization and significant differences in encapsulation efficiency among the drugs were noted, attributed to the interplay between the drug's hydrophobicity and the micellar core's compatibility. Further, the experimental findings revealed that Norfloxacin exhibited the highest encapsulation efficiency, while meloxicam showed the minimum. The outcomes of the study provide valuable insights into the drug-specific encapsulation behavior of Pluronic® micelles, offering guidance for the design of micellar drug delivery systems tailored to specific therapeutic agents.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
7.70%
发文量
492
审稿时长
3-8 weeks
期刊介绍: The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.
期刊最新文献
Comparative evaluation of Pluronic® micelles encapsulation efficiency for a diverse range of hydrophobic drugs: Implications for drug delivery Biodiesel synthesis from composite oil utilizing banana peel (Musa paradisiaca) derived catalyst and process parameter optimization using particle swarm method Zinc oxide nano-flowers synthesized via a hydrothermal approach for electrochemical performance as a supercapacitor electrode Analysis of temperature-frequency dependences of specific conductivity and dielectric permittivity of eugenol Synthesis, structural analysis, and antimicrobial properties of (E)-2-((4-fluorobenzylidene) amino) phenol: A combined experimental and computational study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1