Victoria Cairoli , Daniel Valle-Millares , Pablo Ryan , Lourdes Dominguez , Luz Martín-Carbonero , Ignacio De los Santos , Elena De Matteo , Beatriz Ameigeiras , Marcela De Sousa , Verónica Briz , María V. Preciado , Amanda Fernández-Rodriguez , Pamela Valva
{"title":"Extracellular vesicles derived microRNAs as non-invasive markers of liver fibrosis in chronically infected HCV patients: a pilot study","authors":"Victoria Cairoli , Daniel Valle-Millares , Pablo Ryan , Lourdes Dominguez , Luz Martín-Carbonero , Ignacio De los Santos , Elena De Matteo , Beatriz Ameigeiras , Marcela De Sousa , Verónica Briz , María V. Preciado , Amanda Fernández-Rodriguez , Pamela Valva","doi":"10.1016/j.ncrna.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>Extracellular vesicles (EVs) are an increasingly promising tool for liquid biopsy in liver diseases. Hepatitis C Virus (HCV) infection, alone or together with Human Immunodeficiency Virus (HIV) infection significantly impacts on the microRNA (miRNA) EVs content resembling chronic hepatitis C (CHC) progression. The objective of the study was to delve into the intricate EVs-miRNA profiles in CHC patients with different liver fibrosis stages, aiming to pinpoint non-invasive markers capable of distinguishing significant fibrosis.</div><div>Plasma EV-miRNAs from 50 CHC patients (HCV+ and HCV+/HIV+) stratified in no significant (F < 2) and significant (F ≥ 2) fibrosis, were massively sequenced. General linear models (GLM) were used to identify significantly differential expressed (SDE) miRNAs according to liver fibrosis stages (F ≥ 2 and F < 2). Dysregulated biological pathways were subsequently analyzed <em>in silico</em> for the following groups: i) all patients; ii) HCV+; and iii) HCV+/HIV+. Multiple-ordered logistic regression analysis was performed to develop a score to identify F ≥ 2 cases. The diagnostic potential of both the SDE miRNAs and the developed score was assessed using ROC curve analysis.</div><div>With respect to all CHC patients, two SDE miRNAs (hsa-miR-122-5p and hsa-miR-92a-3p) were identified which regulate genes related to cytoskeleton organization. Regarding their diagnostic performance to discriminate F ≥ 2, both miRNAs individually demonstrated acceptable diagnostic values. However, their combined use in a new score enhanced their diagnostic performance (AUROC = 0.833).</div><div>In the HCV+ subgroup, 8 SDE miRNAs (hsa-miR-122-5p, hsa-miR-320c, hsa-miR-3615, hsa-miR-320a-3p, hsa-miR-374b-5p, hsa-let-7a-3p, hsa-miR-199a-5p, hsa-miR-142-5p), which regulate macrophage activity and cell growth/death regulation, were recognized. Among them, hsa-miR-3615 displayed the highest diagnostic performance to discriminate F ≥ 2 (AUROC = 0.936).</div><div>With respect to HCV+/HIV+, 18 SDE miRNAs (hsa-miR-4508, hsa-miR-122-5p, hsa-miR-451a, hsa-miR-1290, hsa-miR-1246, hsa-miR-107, hsa-miR-15b-5p, hsa-miR-194-5p, hsa-miR-22-5p, hsa-miR-20b-5p, hsa-miR-142-5p, hsa-miR-328-3p, hsa-miR-335-3p, hsa-miR-125a-5p, hsa-miR-423-3p, hsa-let-7d-3p, hsa-miR-128-3p, hsa-miR-10a-5p) were recognized that regulate RNA silencing processes. In this case, hsa-miR-423-3p and hsa-miR-128-3p showed outstanding diagnostic performances (AUROC > 0.900).</div><div>Distinct EVs-miRNA profiles were identified in patients with varying liver fibrosis stages, both in the overall CHC cohort and within HCV+ and HCV+/HIV+ subgroups. These specific miRNA signatures would allow the elucidation of potential mechanisms involved in clinical evolution and identification of specific biomarkers of unfavorable progression, plausible to be used in a diagnostic panel. Furthermore, the developed score demonstrates the ability to discriminate within the CHC group those individuals with significant fibrosis regardless of their HIV infection status.</div></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"12 ","pages":"Pages 132-140"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468054025000332","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) are an increasingly promising tool for liquid biopsy in liver diseases. Hepatitis C Virus (HCV) infection, alone or together with Human Immunodeficiency Virus (HIV) infection significantly impacts on the microRNA (miRNA) EVs content resembling chronic hepatitis C (CHC) progression. The objective of the study was to delve into the intricate EVs-miRNA profiles in CHC patients with different liver fibrosis stages, aiming to pinpoint non-invasive markers capable of distinguishing significant fibrosis.
Plasma EV-miRNAs from 50 CHC patients (HCV+ and HCV+/HIV+) stratified in no significant (F < 2) and significant (F ≥ 2) fibrosis, were massively sequenced. General linear models (GLM) were used to identify significantly differential expressed (SDE) miRNAs according to liver fibrosis stages (F ≥ 2 and F < 2). Dysregulated biological pathways were subsequently analyzed in silico for the following groups: i) all patients; ii) HCV+; and iii) HCV+/HIV+. Multiple-ordered logistic regression analysis was performed to develop a score to identify F ≥ 2 cases. The diagnostic potential of both the SDE miRNAs and the developed score was assessed using ROC curve analysis.
With respect to all CHC patients, two SDE miRNAs (hsa-miR-122-5p and hsa-miR-92a-3p) were identified which regulate genes related to cytoskeleton organization. Regarding their diagnostic performance to discriminate F ≥ 2, both miRNAs individually demonstrated acceptable diagnostic values. However, their combined use in a new score enhanced their diagnostic performance (AUROC = 0.833).
In the HCV+ subgroup, 8 SDE miRNAs (hsa-miR-122-5p, hsa-miR-320c, hsa-miR-3615, hsa-miR-320a-3p, hsa-miR-374b-5p, hsa-let-7a-3p, hsa-miR-199a-5p, hsa-miR-142-5p), which regulate macrophage activity and cell growth/death regulation, were recognized. Among them, hsa-miR-3615 displayed the highest diagnostic performance to discriminate F ≥ 2 (AUROC = 0.936).
With respect to HCV+/HIV+, 18 SDE miRNAs (hsa-miR-4508, hsa-miR-122-5p, hsa-miR-451a, hsa-miR-1290, hsa-miR-1246, hsa-miR-107, hsa-miR-15b-5p, hsa-miR-194-5p, hsa-miR-22-5p, hsa-miR-20b-5p, hsa-miR-142-5p, hsa-miR-328-3p, hsa-miR-335-3p, hsa-miR-125a-5p, hsa-miR-423-3p, hsa-let-7d-3p, hsa-miR-128-3p, hsa-miR-10a-5p) were recognized that regulate RNA silencing processes. In this case, hsa-miR-423-3p and hsa-miR-128-3p showed outstanding diagnostic performances (AUROC > 0.900).
Distinct EVs-miRNA profiles were identified in patients with varying liver fibrosis stages, both in the overall CHC cohort and within HCV+ and HCV+/HIV+ subgroups. These specific miRNA signatures would allow the elucidation of potential mechanisms involved in clinical evolution and identification of specific biomarkers of unfavorable progression, plausible to be used in a diagnostic panel. Furthermore, the developed score demonstrates the ability to discriminate within the CHC group those individuals with significant fibrosis regardless of their HIV infection status.
期刊介绍:
Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.